Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 27(2): 220-236, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067925

RESUMO

Marine biota are redistributing at a rapid pace in response to climate change and shifting seascapes. While changes in fish populations and community structure threaten the sustainability of fisheries, our capacity to adapt by tracking and projecting marine species remains a challenge due to data discontinuities in biological observations, lack of data availability, and mismatch between data and real species distributions. To assess the extent of this challenge, we review the global status and accessibility of ongoing scientific bottom trawl surveys. In total, we gathered metadata for 283,925 samples from 95 surveys conducted regularly from 2001 to 2019. We identified that 59% of the metadata collected are not publicly available, highlighting that the availability of data is the most important challenge to assess species redistributions under global climate change. Given that the primary purpose of surveys is to provide independent data to inform stock assessment of commercially important populations, we further highlight that single surveys do not cover the full range of the main commercial demersal fish species. An average of 18 surveys is needed to cover at least 50% of species ranges, demonstrating the importance of combining multiple surveys to evaluate species range shifts. We assess the potential for combining surveys to track transboundary species redistributions and show that differences in sampling schemes and inconsistency in sampling can be overcome with spatio-temporal modeling to follow species density redistributions. In light of our global assessment, we establish a framework for improving the management and conservation of transboundary and migrating marine demersal species. We provide directions to improve data availability and encourage countries to share survey data, to assess species vulnerabilities, and to support management adaptation in a time of climate-driven ocean changes.


Assuntos
Ecossistema , Pesqueiros , Animais , Mudança Climática , Peixes , Inquéritos e Questionários
2.
PLoS One ; 9(4): e94742, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24728033

RESUMO

Most modelling studies addressed the effectiveness of marine protected areas (MPA) for fisheries sustainability through single species approach. Only a few models analysed the potential benefits of MPAs at the ecosystem level, estimating the potential export of fish biomass from the reserve or analysing the trophic relationships between organisms inside and outside the MPA. Here, we propose to use food web models to assess the contribution of a MPA to the trophic functioning of a larger ecosystem. This approach is applied to the Banc d'Arguin National Park, a large MPA located on the Mauritanian shelf. The ecosystem was modeled using Ecopath with Ecosim, a model that accounts for fisheries, food web structure, and some aspects of the spatial distribution of species, for the period 1991-2006. Gaps in knowledge and uncertainty were taken into account by building three different models. Results showed that the Banc d'Arguin contributes about 9 to 13% to the total consumption, is supporting about 23% of the total production and 18% of the total catch of the Mauritanian shelf ecosystem, and up to 50% for coastal fish. Of the 29 exploited groups, 15 depend on the Banc for more than 30% of their direct or indirect consumptions. Between 1991 and 2006, the fishing pressure increased leading to a decrease in biomass and the catch of high trophic levels, confirming their overall overexploitation. Ecosim simulations showed that adding a new fleet in the Banc d'Arguin would have large impacts on the species with a high reliance on the Banc for food, resulting in a 23% decrease in the current outside MPA catches. We conclude on the usefulness of food web models to assess MPAs contribution to larger ecosystem functioning.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Modelos Teóricos , Algoritmos , Animais , Oceano Atlântico , Biomassa , Peixes , Cadeia Alimentar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA