Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(12): 1689-1706, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34404276

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/patologia , Disbiose , Fígado/metabolismo , Fibrose , Inflamação/metabolismo
2.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34638730

RESUMO

Intestinal dysfunction of farm animals, such as intestinal inflammation and altered gut microbiota, is the critical problem affecting animal welfare, performance and farm profitability. China has prohibited the use of antibiotics to improve feed efficiency and growth performance for farm animals, including poultry, in 2020. With the advantages of maintaining gut homeostasis, enhancing digestion, and absorption and modulating gut microbiota, organic acids are regarded as promising antibiotic alternatives. Butyric and citric acids as presentative organic acids positively impact growth performance, welfare, and intestinal health of livestock mainly by reducing pathogenic bacteria and maintaining the gastrointestinal tract (GIT) pH. This review summarizes the discovery of butyric acid (BA), citric acid (CA) and their salt forms, molecular structure and properties, metabolism, biological functions and their applications in poultry nutrition. The research findings about BA, CA and their salts on rats, pigs and humans are also briefly reviewed. Therefore, this review will fill the knowledge gaps of the scientific community and may be of great interest for poultry nutritionists, researchers and feed manufacturers about these two weak organic acids and their effects on intestinal health and gut microbiota community, with the hope of providing safe, healthy and nutrient-rich poultry products to consumers.


Assuntos
Ração Animal , Ácido Butírico/farmacologia , Ácido Cítrico/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Aves Domésticas/microbiologia , Animais
3.
Biology (Basel) ; 13(5)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38785799

RESUMO

In this study, a commercial sodium butyrate protected by a new buffer salt solution (NSB) was tested to determine whether it can be used as an antibiotic alternative in broiler production. A total of 192 1-day-old broilers were randomly allocated to three dietary treatments: soybean meal diet (CON), antibiotic diet (ANT, basal diet + 100 mg/kg aureomycin), and NSB (basal diet + 800 mg/kg NSB). The growth performance, serum anti-inflammatory cytokines, intestinal morphology, gut barrier function, antioxidative parameters, SCFAs' content, and cecal microbiota were analyzed. The result showed that NSB significantly improved ADFI and ADG (p < 0.01), and decreased FCR (p < 0.01). Serum anti-inflammatory cytokine IL-10 was up-regulated (p < 0.01), and pro-inflammatory TNF-α was down-regulated (p < 0.05) by NSB supplementation. H&E results showed that VH and the VH/CD ratio significantly increased (p < 0.05) in the jejunum and ileum in the NSB group. Furthermore, ZO-1 (p < 0.01), claudin-1 (p < 0.01), and occludin (p < 0.05) in the jejunum and claudin-1 (p < 0.01) and mucin-2 (p < 0.05) in the ileum were significantly up-regulated in the NSB group. Additionally, SOD (p < 0.05) and the T-AOC/MDA ratio (p < 0.01) in the jejunum and SOD in the ileum were significantly increased (p < 0.05) in the NSB group. The MDA level also significantly increased (p < 0.01) in the ANT group in the jejunum. Propionic acid (p < 0.05) and butyric acid (p < 0.01) content significantly increased in the NSB group in the jejunum and ileum segments. The 16S rRNA sequencing results showed no significant difference (p > 0.05) in alpha and beta diversity among the groups. LEFSe analysis also indicated that Peptostreptococcaceae, Colidextribacter, Firmicutes, Oscillospira, and Erysipelatoclostridiaceae, which promote SCFA production (p < 0.05), were identified as dominant taxon-enriched bacterial genera in the NSB group. The Spearman correlation analysis revealed that Colidextribacter with ADFI, ADG, VH, claudin-1 (p < 0.05), and unclassified_f__Peptostreptococcaceae with ADFI, IL-10, and ZO-1 were positively correlated (p < 0.05). Furthermore, ADFI and ADG with IL-10, claudin-1, SOD, T-AOC, and butyric acid (p < 0.05), and similarly, ADG with VH (p < 0.05), showed a positive correlation. In conclusion, NSB enhanced the growth performance by improving jejunum and ileum morphology, and serum anti-inflammatory cytokines, and by regulating the intestinal barrier function and antioxidant capacity, SCFAs' content, and cecum microbiota, showing its potential use as an alternative to antibiotics in poultry nutrition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA