Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Risk Anal ; 33(1): 68-79, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22587756

RESUMO

The article closely examines the role of mechanistic effect models (e.g., population models) in the European environmental risk assessment (ERA) of pesticides. We studied perspectives of three stakeholder groups on population modeling in ERA of pesticides. Forty-three in-depth, semi-structured interviews were conducted with stakeholders from regulatory authorities, industry, and academia all over Europe. The key informant approach was employed in recruiting our participants. They were first identified as key stakeholders in the field and then sampled by means of a purposive sampling, where each stakeholder identified as important by others was interviewed and asked to suggest another potential participant for our study. Our results show that participants, although having different institutional backgrounds often presented similar perspectives and concerns about modeling. Analysis of repeating ideas and keywords revealed that all stakeholders had very high and often contradicting expectations from models. Still, all three groups expected effect models to become integrated in future ERA of pesticides. Main hopes associated with effect models were to reduce the amount of expensive and complex testing and field monitoring, both at the product development stage, and as an aid to develop mitigation measures. Our analysis suggests that, although the needs of stakeholders often overlapped, subtle differences and lack of trust hinder the process of introducing mechanistic effect models into ERA.


Assuntos
Ecologia/métodos , Exposição Ambiental/análise , Modelos Teóricos , Praguicidas , Medição de Risco/métodos , Exposição Ambiental/efeitos adversos , Europa (Continente) , Humanos
2.
Integr Environ Assess Manag ; 17(2): 352-363, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32910508

RESUMO

Earthworms are important ecosystem engineers, and assessment of the risk of plant protection products toward them is part of the European environmental risk assessment (ERA). In the current ERA scheme, exposure and effects are represented simplistically and are not well integrated, resulting in uncertainty when the results are applied to ecosystems. Modeling offers a powerful tool to integrate the effects observed in lower tier laboratory studies with the environmental conditions under which exposure is expected in the field. This paper provides a summary of the (In)Field Organism Risk modEling by coupling Soil Exposure and Effect (FORESEE) Workshop held 28-30 January 2020 in Düsseldorf, Germany. This workshop focused on toxicokinetic-toxicodynamic (TKTD) and population modeling of earthworms in the context of ERA. The goal was to bring together scientists from different stakeholder groups to discuss the current state of soil invertebrate modeling and to explore how earthworm modeling could be applied to risk assessments, in particular how the different model outputs can be used in the tiered ERA approach. In support of these goals, the workshop aimed at addressing the requirements and concerns of the different stakeholder groups to support further model development. The modeling approach included 4 submodules to cover the most relevant processes for earthworm risk assessment: environment, behavior (feeding, vertical movement), TKTD, and population. Four workgroups examined different aspects of the model with relevance for risk assessment, earthworm ecology, uptake routes, and cross-species extrapolation and model testing. Here, we present the perspectives of each workgroup and highlight how the collaborative effort of participants from multidisciplinary backgrounds helped to establish common ground. In addition, we provide a list of recommendations for how earthworm TKTD modeling could address some of the uncertainties in current risk assessments for plant protection products. Integr Environ Assess Manag 2021;17:352-363. © 2020 SETAC.


Assuntos
Oligoquetos , Praguicidas , Animais , Ecossistema , Alemanha , Humanos , Praguicidas/toxicidade , Medição de Risco , Solo
3.
Integr Environ Assess Manag ; 12(1): 58-66, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26411378

RESUMO

Current risk assessment methods for measuring the toxicity of plant protection products (PPPs) on soil invertebrates use standardized laboratory conditions to determine acute effects on mortality and sublethal effects on reproduction. If an unacceptable risk is identified at the lower tier, population-level effects are assessed using semifield and field trials at a higher tier because modeling methods for extrapolating available lower-tier information to population effects have not yet been implemented. Field trials are expensive, time consuming, and cannot be applied to variable landscape scenarios. Mechanistic modeling of the toxicological effects of PPPs on individuals and their responses combined with simulation of population-level response shows great potential in fulfilling such a need, aiding ecologically informed extrapolation. Here, we introduce and demonstrate the potential of 2 population models for ubiquitous soil invertebrates (collembolans and earthworms) as refinement options in current risk assessment. Both are spatially explicit agent-based models (ABMs), incorporating individual and landscape variability. The models were used to provide refined risk assessments for different application scenarios of a hypothetical pesticide applied to potato crops (full-field spray onto the soil surface [termed "overall"], in-furrow, and soil-incorporated pesticide applications). In the refined risk assessment, the population models suggest that soil invertebrate populations would likely recover within 1 year after pesticide application, regardless of application method. The population modeling for both soil organisms also illustrated that a lower predicted average environmental concentration in soil (PECsoil) could potentially lead to greater effects at the population level, depending on the spatial heterogeneity of the pesticide and the behavior of the soil organisms. Population-level effects of spatial-temporal variations in exposure were elucidated in the refined risk assessment, using ABMs and population-level endpoints while yielding outputs that directly address the protection goals. We recommend choosing model outputs that are closely related to specific protection goals, using available toxicity data and accepted fate models to the extent possible in parameterizing models to minimize additional data needs and testing, evaluating, and documenting models following recent guidance.


Assuntos
Agroquímicos/toxicidade , Exposição Ambiental , Modelos Biológicos , Oligoquetos , Praguicidas/toxicidade , Solo , Animais , Ecologia , Medição de Risco
4.
Environ Toxicol Chem ; 33(7): 1508-16, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24549590

RESUMO

The authors implemented a fractal algorithm in a spatially explicit individual-based model to generate landscapes with different microscale patterns of habitat fragmentation and disturbance events and studied their effects on population dynamics of the collembolan Folsomia candida. Among human activities that may cause habitat destruction, the present study focused on agricultural practices. Soil organisms living in a cultivated field are subjected to habitat loss and fragmentation as well as disturbance events generated by the application of agrochemicals and related activities. In addition, they are exposed to natural stressors, which might influence the effects of chemicals on populations. The authors designed simulation experiments that incorporate these 3 factors and investigated their effects on populations of F. candida in the presence or absence of behavioral avoidance of contaminated habitat. Simulation results show that spatial autocorrelation of contamination has different effects on population growth and equilibrium size according to the percentage of clean habitat. This pattern changes when avoidance behavior is excluded from the model, as does population recovery after a series of disturbance events. The model suggests that a combination of heterogeneous contamination and multiple stressors can lead to unexpected effects of toxicants at the population level. Individual-based models can help to understand these effects and therefore add ecological realism to environmental risk assessment of chemicals and can help to explore the effects of different risk management options.


Assuntos
Agroquímicos/toxicidade , Artrópodes/efeitos dos fármacos , Poluentes do Solo/toxicidade , Animais , Artrópodes/fisiologia , Simulação por Computador , Ecossistema , Modelos Biológicos , Dinâmica Populacional , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA