Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Cell ; 172(5): 937-951.e18, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29456082

RESUMO

piRNAs (Piwi-interacting small RNAs) engage Piwi Argonautes to silence transposons and promote fertility in animal germlines. Genetic and computational studies have suggested that C. elegans piRNAs tolerate mismatched pairing and in principle could target every transcript. Here we employ in vivo cross-linking to identify transcriptome-wide interactions between piRNAs and target RNAs. We show that piRNAs engage all germline mRNAs and that piRNA binding follows microRNA-like pairing rules. Targeting correlates better with binding energy than with piRNA abundance, suggesting that piRNA concentration does not limit targeting. In mRNAs silenced by piRNAs, secondary small RNAs accumulate at the center and ends of piRNA binding sites. In germline-expressed mRNAs, however, targeting by the CSR-1 Argonaute correlates with reduced piRNA binding density and suppression of piRNA-associated secondary small RNAs. Our findings reveal physiologically important and nuanced regulation of individual piRNA targets and provide evidence for a comprehensive post-transcriptional regulatory step in germline gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Células Germinativas/metabolismo , RNA Interferente Pequeno/metabolismo , Sequência de Aminoácidos , Animais , Pareamento de Bases , Sequência de Bases , Sítios de Ligação , Proteínas de Caenorhabditis elegans/química , Quimera/metabolismo , Inativação Gênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Cell ; 164(5): 974-84, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26919432

RESUMO

Piwi-interacting RNAs (piRNAs) engage Piwi proteins to suppress transposons and are essential for fertility in diverse organisms. An interesting feature of piRNAs is that, while piRNA lengths are stereotypical within a species, they can differ widely between species. For example, piRNAs are mainly 29 and 30 nucleotides in humans, 24 to 30 nucleotides in D. melanogaster, and uniformly 21 nucleotides in C. elegans. However, how piRNA length is determined and whether length impacts function remains unknown. Here, we show that C. elegans deficient for PARN-1, a conserved RNase, accumulate untrimmed piRNAs with 3' extensions. Surprisingly, these longer piRNAs are stable and associate with the Piwi protein PRG-1 but fail to robustly recruit downstream silencing factors. Our findings identify PARN-1 as a key regulator of piRNA length in C. elegans and suggest that length is regulated to promote efficient transcriptome surveillance.


Assuntos
Caenorhabditis elegans/metabolismo , Exorribonucleases/metabolismo , Processamento Pós-Transcricional do RNA , Sequência de Aminoácidos , Animais , Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Exorribonucleases/química , Redes e Vias Metabólicas , Dados de Sequência Molecular , Mutação , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Transcriptoma
3.
Cell ; 160(3): 407-19, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635455

RESUMO

Effective silencing by RNA-interference (RNAi) depends on mechanisms that amplify and propagate the silencing signal. In some organisms, small-interfering RNAs (siRNAs) are amplified from target mRNAs by RNA-dependent RNA polymerase (RdRP). Both RdRP recruitment and mRNA silencing require Argonaute proteins, which are generally thought to degrade RNAi targets by directly cleaving them. However, in C. elegans, the enzymatic activity of the primary Argonaute, RDE-1, is not required for silencing activity. We show that RDE-1 can instead recruit an endoribonuclease, RDE-8, to target RNA. RDE-8 can cleave RNA in vitro and is needed for the production of 3' uridylated fragments of target mRNA in vivo. We also find that RDE-8 promotes RdRP activity, thereby ensuring amplification of siRNAs. Together, our findings suggest a model in which RDE-8 cleaves target mRNAs to mediate silencing, while generating 3' uridylated mRNA fragments to serve as templates for the RdRP-directed amplification of the silencing signal.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Endorribonucleases/metabolismo , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Grânulos Citoplasmáticos/metabolismo , Endorribonucleases/química , Endorribonucleases/genética , Dados de Sequência Molecular , Interferência de RNA , RNA de Cadeia Dupla , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo , Alinhamento de Sequência
4.
Mol Cell ; 81(3): 546-557.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33378643

RESUMO

Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Monoéster Fosfórico Hidrolases/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Regulação da Expressão Gênica no Desenvolvimento , Monoéster Fosfórico Hidrolases/genética , Fosforilação , RNA/genética , Capuzes de RNA , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo , Espermatogênese , Especificidade por Substrato
5.
Cell ; 155(7): 1532-44, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360276

RESUMO

During each life cycle, germ cells preserve and pass on both genetic and epigenetic information. In C. elegans, the ALG-3/4 Argonaute proteins are expressed during male gametogenesis and promote male fertility. Here, we show that the CSR-1 Argonaute functions with ALG-3/4 to positively regulate target genes required for spermiogenesis. Our findings suggest that ALG-3/4 functions during spermatogenesis to amplify a small RNA signal that represents an epigenetic memory of male-specific gene expression. CSR-1, which is abundant in mature sperm, appears to transmit this memory to offspring. Surprisingly, in addition to small RNAs targeting male-specific genes, we show that males also harbor an extensive repertoire of CSR-1 small RNAs targeting oogenesis-specific mRNAs. Together, these findings suggest that C. elegans sperm transmit not only the genome but also epigenetic binary signals in the form of Argonaute/small RNA complexes that constitute a memory of gene expression in preceding generations.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Epigênese Genética , Proteínas de Ligação a RNA/metabolismo , Espermatogênese , Animais , Caenorhabditis elegans/genética , Feminino , Masculino , Pequeno RNA não Traduzido/metabolismo , Transdução de Sinais , Espermatozoides , Transcrição Gênica
6.
Cell ; 150(1): 78-87, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22738724

RESUMO

Piwi Argonautes and Piwi-interacting RNAs (piRNAs) mediate genome defense by targeting transposons. However, many piRNA species lack obvious sequence complementarity to transposons or other loci; only one C. elegans transposon is a known piRNA target. Here, we show that, in mutants lacking the Piwi Argonaute PRG-1 (and consequently its associated piRNAs/21U-RNAs), many silent loci in the germline exhibit increased levels of mRNA expression with a concomitant depletion of RNA-dependent RNA polymerase (RdRP)-derived secondary small RNAs termed 22G-RNAs. Sequences depleted of 22G-RNAs are proximal to potential target sites that base pair imperfectly but extensively to 21U-RNAs. We show that PRG-1 is required to initiate, but not to maintain, silencing of transgenes engineered to contain complementarity to endogenous 21U-RNAs. Our findings support a model in which C. elegans piRNAs utilize their enormous repertoire of targeting capacity to scan the germline transcriptome for foreign sequences, while endogenous germline-expressed genes are actively protected from piRNA-induced silencing.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genoma Helmíntico , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/metabolismo , Inativação Gênica , Células Germinativas
7.
Cell ; 151(7): 1488-500, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23260138

RESUMO

Piwi-interacting (pi) RNAs are germline-expressed small RNAs linked to epigenetic programming. C. elegans piRNAs are thought to be transcribed as independent gene-like loci. To test this idea and to identify potential transcription start (TS) sites for piRNA precursors, we developed CapSeq, an efficient enzymatic method for 5' anchored RNA profiling. Using CapSeq, we identify candidate TS sites, defined by 70-90 nt sequence tags, for >50% of annotated Pol II loci. Surprisingly, however, these CapSeq tags failed to identify the overwhelming majority of piRNA loci. Instead, we show that the likely piRNA precursors are ∼26 nt capped small (cs) RNAs that initiate precisely 2 nt upstream of mature piRNAs and that piRNA processing or stability requires a U at the csRNA +3 position. Finally, we identify a heretofore unrecognized class of piRNAs processed from csRNAs that are expressed at promoters genome wide, nearly doubling the number of piRNAs available for genome surveillance.


Assuntos
Caenorhabditis elegans/genética , Perfilação da Expressão Gênica/métodos , Capuzes de RNA/genética , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA Interferente Pequeno/genética , Sítio de Iniciação de Transcrição , Animais , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Estudo de Associação Genômica Ampla , Camundongos , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo
8.
Cell ; 150(1): 65-77, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22738726

RESUMO

Organisms employ a fascinating array of strategies to silence invasive nucleic acids such as transposons and viruses. Although evidence exists for several pathways that detect foreign sequences, including pathways that sense copy number, unpaired DNA, or aberrant RNA (e.g., dsRNA), in many cases, the mechanisms used to distinguish "self" from "nonself" nucleic acids remain mysterious. Here, we describe an RNA-induced epigenetic silencing pathway that permanently silences single-copy transgenes. We show that the Piwi Argonaute PRG-1 and its genomically encoded piRNA cofactors initiate permanent silencing, and maintenance depends on chromatin factors and the WAGO Argonaute pathway. Our findings support a model in which PRG-1 scans for foreign sequences and two other Argonaute pathways serve as epigenetic memories of "self" and "nonself" RNAs. These findings suggest how organisms can utilize RNAi-related mechanisms to detect foreign sequences not by any molecular signature, but by comparing the foreign sequence to a memory of previous gene expression.


Assuntos
Caenorhabditis elegans/genética , Epigenômica , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inativação Gênica , Células Germinativas/metabolismo , Interferência de RNA
9.
Mol Cell ; 70(4): 639-649.e6, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29775580

RESUMO

Animal cells have a remarkable capacity to adopt durable and heritable gene expression programs or epigenetic states that define the physical properties and diversity of somatic cell types. The maintenance of epigenetic programs depends on poorly understood pathways that prevent gain or loss of inherited signals. In the germline, epigenetic factors are enriched in liquid-like perinuclear condensates called nuage. Here, we identify the deeply conserved helicase-domain protein, ZNFX-1, as an epigenetic regulator and component of nuage that interacts with Argonaute systems to balance epigenetic inheritance. Our findings suggest that ZNFX-1 promotes the 3' recruitment of machinery that propagates the small RNA epigenetic signal and thus counteracts a tendency for Argonaute targeting to shift 5' along the mRNA. These functional insights support the idea that recently identified subdomains of nuage, including ZNFX-1 granules or "Z-granules," may define spatial and temporal zones of molecular activity during epigenetic regulation.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Núcleo Celular/genética , Epigênese Genética , Células Germinativas/metabolismo , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Organelas , RNA Helicases/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo
10.
PLoS Genet ; 19(6): e1010804, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37384599

RESUMO

Retroviruses and closely related LTR retrotransposons export full-length, unspliced genomic RNA (gRNA) for packaging into virions and to serve as the mRNA encoding GAG and POL polyproteins. Because gRNA often includes splice acceptor and donor sequences used to splice viral mRNAs, retroelements must overcome host mechanisms that retain intron-containing RNAs in the nucleus. Here we examine gRNA expression in Cer1, an LTR retrotransposon in C. elegans which somehow avoids silencing and is highly expressed in germ cells. Newly exported Cer1 gRNA associates rapidly with the Cer1 GAG protein, which has structural similarity with retroviral GAG proteins. gRNA export requires CERV (C. elegans regulator of viral expression), a novel protein encoded by a spliced Cer1 mRNA. CERV phosphorylation at S214 is essential for gRNA export, and phosphorylated CERV colocalizes with nuclear gRNA at presumptive sites of transcription. By electron microscopy, tagged CERV proteins surround clusters of distinct, linear fibrils that likely represent gRNA molecules. Single fibrils, or groups of aligned fibrils, also localize near nuclear pores. During the C. elegans self-fertile period, when hermaphrodites fertilize oocytes with their own sperm, CERV concentrates in two nuclear foci that are coincident with gRNA. However, as hermaphrodites cease self-fertilization, and can only produce cross-progeny, CERV undergoes a remarkable transition to form giant nuclear rods or cylinders that can be up to 5 microns in length. We propose a novel mechanism of rod formation, in which stage-specific changes in the nucleolus induce CERV to localize to the nucleolar periphery in flattened streaks of protein and gRNA; these streaks then roll up into cylinders. The rods are a widespread feature of Cer1 in wild strains of C. elegans, but their function is not known and might be limited to cross-progeny. We speculate that the adaptive strategy Cer1 uses for the identical self-progeny of a host hermaphrodite might differ for heterozygous cross-progeny sired by males. For example, mating introduces male chromosomes which can have different, or no, Cer1 elements.


Assuntos
RNA Viral , Retroelementos , Masculino , Feminino , Animais , Retroelementos/genética , Caenorhabditis elegans/genética , Transporte Ativo do Núcleo Celular/genética , Sêmen , Genômica , Citocinas , RNA Mensageiro
11.
Cell ; 140(4): 452-4, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20178736

RESUMO

The amplification of small RNAs and the assembly of heterochromatin are mutually dependent processes in fission yeast. But which comes first? Halic and Moazed (2010) propose that primal small RNAs initiate the amplification of small interfering RNAs that drive heterochromatin formation and chromatin silencing.


Assuntos
Heterocromatina/metabolismo , Interferência de RNA , RNA não Traduzido/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , RNA Interferente Pequeno/metabolismo
12.
Cell ; 139(1): 135-48, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19804759

RESUMO

We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Meiose , Metáfase , Mitose , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Uridina/metabolismo
13.
Cell ; 139(1): 123-34, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19804758

RESUMO

RNAi-related pathways regulate diverse processes, from developmental timing to transposon silencing. Here, we show that in C. elegans the Argonaute CSR-1, the RNA-dependent RNA polymerase EGO-1, the Dicer-related helicase DRH-3, and the Tudor-domain protein EKL-1 localize to chromosomes and are required for proper chromosome segregation. In the absence of these factors chromosomes fail to align at the metaphase plate and kinetochores do not orient to opposing spindle poles. Surprisingly, the CSR-1-interacting small RNAs (22G-RNAs) are antisense to thousands of germline-expressed protein-coding genes. Nematodes assemble holocentric chromosomes in which continuous kinetochores must span the expressed domains of the genome. We show that CSR-1 interacts with chromatin at target loci but does not downregulate target mRNA or protein levels. Instead, our findings support a model in which CSR-1 complexes target protein-coding domains to promote their proper organization within the holocentric chromosomes of C. elegans.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Segregação de Cromossomos , Animais , Caenorhabditis elegans/genética , RNA Helicases DEAD-box/metabolismo , RNA Polimerase Dependente de RNA/metabolismo
14.
Genes Dev ; 29(4): 362-78, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25691467

RESUMO

Approximately 75% of the human genome is transcribed, the majority of which does not encode protein. However, many noncoding RNAs (ncRNAs) are rapidly degraded after transcription, and relatively few have established functions, questioning the significance of this observation. Here we show that esBAF, a SWI/SNF family nucleosome remodeling factor, suppresses transcription of ncRNAs from ∼57,000 nucleosome-depleted regions (NDRs) throughout the genome of mouse embryonic stem cells (ESCs). We show that esBAF functions to both keep NDRs nucleosome-free and promote elevated nucleosome occupancy adjacent to NDRs. Reduction of adjacent nucleosome occupancy upon esBAF depletion is strongly correlated with ncRNA expression, suggesting that flanking nucleosomes form a barrier to pervasive transcription. Upon forcing nucleosome occupancy near two NDRs using a nucleosome-positioning sequence, we found that esBAF is no longer required to silence transcription. Therefore, esBAF's function to enforce nucleosome occupancy adjacent to NDRs, and not its function to maintain NDRs in a nucleosome-free state, is necessary for silencing transcription over ncDNA. Finally, we show that the ability of a strongly positioned nucleosome to repress ncRNA depends on its translational positioning. These data reveal a novel role for esBAF in suppressing pervasive transcription from open chromatin regions in ESCs.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células-Tronco Embrionárias/fisiologia , RNA não Traduzido/genética , Animais , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Mol Cell ; 38(6): 803-14, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20417140

RESUMO

A variety of small RNAs, including the Dicer-dependent miRNAs and the Dicer-independent Piwi-interacting RNAs, associate with Argonaute family proteins to regulate gene expression in diverse cellular processes. These two species of small RNA have not been found in fungi. Here, by analyzing small RNAs associated with the Neurospora Argonaute protein QDE-2, we show that diverse pathways generate miRNA-like small RNAs (milRNAs) and Dicer-independent small interfering RNAs (disiRNAs) in this filamentous fungus. Surprisingly, milRNAs are produced by at least four different mechanisms that use a distinct combination of factors, including Dicers, QDE-2, the exonuclease QIP, and an RNase III domain-containing protein, MRPL3. In contrast, disiRNAs originate from loci producing overlapping sense and antisense transcripts, and do not require the known RNAi components for their production. Taken together, these results uncover several pathways for small RNA production in filamentous fungi, shedding light on the diversity and evolutionary origins of eukaryotic small RNAs.


Assuntos
Proteínas Fúngicas/metabolismo , MicroRNAs/biossíntese , Neurospora/metabolismo , RNA Fúngico/biossíntese , RNA Interferente Pequeno/biossíntese , Ribonuclease III/metabolismo , Inativação Gênica , MicroRNAs/genética , Mutação , Neurospora/genética , RNA Fúngico/genética , RNA Interferente Pequeno/genética
16.
RNA ; 21(12): 2067-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26428694

RESUMO

Influenza A virus (IAV) lacks the enzyme for adding 5' caps to its RNAs and snatches the 5' ends of host capped RNAs to prime transcription. Neither the preference of the host RNA sequences snatched nor the effect of cap-snatching on host processes is completely defined. Previous studies of influenza cap-snatching used poly(A)-selected RNAs from infected cells or relied on annotated host genes to define the snatched host RNAs, and thus lack details on many noncoding host RNAs including snRNAs, snoRNAs, and promoter-associated capped small (cs)RNAs, which are made by "paused" Pol II during transcription initiation. In this study, we used a nonbiased technique, CapSeq, to identify host and viral-capped RNAs including nonpolyadenylated RNAs in the same samples, and investigated the substrate-product correlation between the host RNAs and the viral RNAs. We demonstrated that noncoding host RNAs, particularly U1 and U2, are the preferred cap-snatching source over mRNAs or pre-mRNAs. We also found that csRNAs are highly snatched by IAV. Because the functions of csRNAs remain mostly unknown, especially in somatic cells, our finding reveals that csRNAs at least play roles in the process of IAV infection. Our findings support a model where nascent RNAs including csRNAs are the preferred targets for cap-snatching by IAV and raise questions about how IAV might use snatching preferences to modulate host-mRNA splicing and transcription.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Capuzes de RNA/metabolismo , Sequência de Bases , Linhagem Celular Tumoral , Regulação Viral da Expressão Gênica , Genes Virais , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo
17.
Mol Cell ; 36(2): 231-44, 2009 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-19800275

RESUMO

Endogenous small RNAs (endo-siRNAs) interact with Argonaute (AGO) proteins to mediate sequence-specific regulation of diverse biological processes. Here, we combine deep-sequencing and genetic approaches to explore the biogenesis and function of endo-siRNAs in C. elegans. We describe conditional alleles of the Dicer-related helicase, drh-3, that abrogate both RNA interference and the biogenesis of endo-siRNAs, called 22G-RNAs. DRH-3 is a core component of RNA-dependent RNA polymerase (RdRP) complexes essential for several distinct 22G-RNA systems. We show that, in the germline, one system is dependent on worm-specific AGOs, including WAGO-1, which localizes to germline nuage structures called P granules. WAGO-1 silences certain genes, transposons, pseudogenes, and cryptic loci. Finally, we demonstrate that components of the nonsense-mediated decay pathway function in at least one WAGO-mediated surveillance pathway. These findings broaden our understanding of the biogenesis and diversity of 22G-RNAs and suggest additional regulatory functions for small RNAs.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Genoma/genética , Células Germinativas/metabolismo , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Proteínas de Caenorhabditis elegans/química , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Análise de Sequência de RNA , Temperatura
18.
Mol Cell ; 31(1): 67-78, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18571452

RESUMO

In metazoans, Piwi-related Argonaute proteins have been linked to germline maintenance, and to a class of germline-enriched small RNAs termed piRNAs. Here we show that an abundant class of 21 nucleotide small RNAs (21U-RNAs) are expressed in the C. elegans germline, interact with the C. elegans Piwi family member PRG-1, and depend on PRG-1 activity for their accumulation. The PRG-1 protein is expressed throughout development and localizes to nuage-like structures called P granules. Although 21U-RNA loci share a conserved upstream sequence motif, the mature 21U-RNAs are not conserved and, with few exceptions, fail to exhibit complementarity or evidence for direct regulation of other expressed sequences. Our findings demonstrate that 21U-RNAs are the piRNAs of C. elegans and link this class of small RNAs and their associated Piwi Argonaute to the maintenance of temperature-dependent fertility.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , RNA de Helmintos/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Fertilidade , Regulação da Expressão Gênica , Células Germinativas/citologia , Células Germinativas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Mutação/genética , Ligação Proteica , Complexo de Inativação Induzido por RNA , Sequências Reguladoras de Ácido Nucleico/genética
19.
Proc Natl Acad Sci U S A ; 110(10): E918-27, 2013 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-23431196

RESUMO

In early Caenorhabditis elegans embryos, the Wingless/int (Wnt)- and Src-signaling pathways function in parallel to induce both the division orientation of the endomesoderm (EMS) blastomere and the endoderm fate of the posterior EMS daughter cell, called E. Here, we show that, in addition to its role in endoderm specification, the ß-catenin-related protein Worm armadillo 1 (WRM-1) also plays a role in controlling EMS division orientation. WRM-1 localizes to the cortex of cells in both embryos and larvae and is released from the cortex in a Wnt-responsive manner. We show that WRM-1 cortical release is disrupted in a hypomorphic cyclin-dependent protein kinase 1 (cdk-1) mutant and that WRM-1 lacking potential CDK-1 phosphoacceptor sites is retained at the cortex. In both cases, cortical WRM-1 interferes with EMS spindle rotation without affecting endoderm specification. Finally, we show that removal of WRM-1 from the cortex can restore WT division orientation, even when both Wnt- and Src-signaling pathways are compromised. Our findings are consistent with a model in which Wnt signaling and CDK-1 modify WRM-1 in a temporal and spatial manner to unmask an intrinsic polarity cue required for proper orientation of the EMS cell division axis.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Divisão Celular/genética , Divisão Celular/fisiologia , Polaridade Celular/genética , Polaridade Celular/fisiologia , Genes de Helmintos , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Prófase/genética , Prófase/fisiologia , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fuso Acromático/metabolismo , Via de Sinalização Wnt , Quinases da Família src/metabolismo
20.
Proc Natl Acad Sci U S A ; 107(8): 3582-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133583

RESUMO

Argonaute (AGO) proteins interact with distinct classes of small RNAs to direct multiple regulatory outcomes. In many organisms, including plants, fungi, and nematodes, cellular RNA-dependent RNA polymerases (RdRPs) use AGO targets as templates for amplification of silencing signals. Here, we show that distinct RdRPs function sequentially to produce small RNAs that target endogenous loci in Caenorhabditis elegans. We show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are required for the biogenesis of 26-nt small RNAs with a 5' guanine (26G-RNAs) and that 26G-RNAs engage the Piwi-clade AGO, ERGO-1. Our findings support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific AGOs (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a nonrandom distribution in the genome and appear to include many gene duplications, suggesting that this pathway may control overexpression resulting from gene expansion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/biossíntese , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endorribonucleases/metabolismo , Inativação Gênica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA