Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Org Biomol Chem ; 20(9): 1869-1873, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35156979

RESUMO

A biocatalytic cascade based on concerted operation of pyruvate kinase and luciferase with a bioluminescent output was switched reversibly between low and high activity by applying an external magnetic field at different positions or removing it. The enzymes participating in the reaction cascade were bound to magnetic nanoparticles to allow their translocation or aggregation/dispersion to be controlled by the magnetic field. The reaction intensity, measured as the bioluminescent output, was dependent on the effective distances between the enzymes transported on the magnetic nanoparticles controlled by the magnets.


Assuntos
Fluorescência , Luciferases/metabolismo , Nanopartículas de Magnetita/química , Piruvato Quinase/metabolismo , Aliivibrio fischeri/enzimologia , Animais , Biocatálise , Luciferases/química , Medições Luminescentes , Campos Magnéticos , Piruvato Quinase/química , Coelhos
2.
Phys Chem Chem Phys ; 24(11): 6410-6414, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35234792

RESUMO

Immobilized avidin-biotin complexes were used to release biotinylated (bio)molecules upon producing local pH changes near an electrode surface by electrochemical reactions. The nitro-avidin complex with biotin was dissociated by increasing local pH with electrochemical O2 reduction. The avidin complex with iminobiotin was split by decreasing local pH with electrochemical oxidation of ascorbate. Both studied systems were releasing molecule cargo species in response to small electrical potentials (-0.4 V or 0.2 V for the O2 reduction or ascorbate oxidation, respectively) applied on the modified electrodes.


Assuntos
Avidina , Biotina , Avidina/química , Biotina/química , Eletrodos , Concentração de Íons de Hidrogênio , Oxirredução
3.
Mikrochim Acta ; 189(10): 371, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36064809

RESUMO

A new nano-structured platform for fluorescent analysis using PQQ-dependent glucose dehydrogenase (PQQ-GDH) was developed, particularly using a smartphone for transduction and quantification of optical signals. The PQQ-GDH enzyme was immobilized on SiO2 nanoparticles deposited on glass microfiber filter paper, providing a high load of the biocatalytic enzyme. The platform was tested and optimized for glucose determination using a wild type of the PQQ-GDH enzyme. The analysis was based on the fluorescence generated by the reduced form of phenazine methosulfate produced stoichiometrically to the glucose concentration. The fluorescent signals were generated at separate analytical spots on the paper support under wavelength (365 nm) UV excitation. The images of the analytical spots, dependent on the glucose concentration, were obtained using a photo camera of a standard smartphone. Then, the images were processed and quantified using software installed in a smartphone. The developed biocatalytic platform is the first step to assembling a large variety of biosensors using the same platform functionalized with artificial allosteric chimeric PQQ-dependent glucose dehydrogenase activated with different analytes. The future combination of the artificial enzymes, the presently developed analytical platform, and signal processing with a smartphone will lead to novel point-of-care and end-user biosensors applicable to virtually all possible analytes.


Assuntos
Glucose 1-Desidrogenase , Cofator PQQ , Glucose/análise , Dióxido de Silício , Smartphone
4.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682778

RESUMO

Most in vitro iron mobilization studies from ferritin have been performed in aqueous buffered solutions using a variety of reducing substances. The kinetics of iron mobilization from ferritin in a medium that resembles the complex milieu of cells could dramatically differ from those in aqueous solutions, and to our knowledge, no such studies have been performed. Here, we have studied the kinetics of iron release from ferritin in fresh yeast cell lysates and examined the effect of cellular metabolites on this process. Our results show that iron release from ferritin in buffer is extremely slow compared to cell lysate under identical experimental conditions, suggesting that certain cellular metabolites present in yeast cell lysate facilitate the reductive release of ferric iron from the ferritin core. Using filtration membranes with different molecular weight cut-offs (3, 10, 30, 50, and 100 kDa), we demonstrate that a cellular component >50 kDa is implicated in the reductive release of iron. When the cell lysate was washed three times with buffer, or when NADPH was omitted from the solution, a dramatic decrease in iron mobilization rates was observed. The addition of physiological concentrations of free flavins, such as FMN, FAD, and riboflavin showed about a two-fold increase in the amount of released iron. Notably, all iron release kinetics occurred while the solution oxygen level was still high. Altogether, our results indicate that in addition to ferritin proteolysis, there exists an auxiliary iron reductive mechanism that involves long-range electron transfer reactions facilitated by the ferritin shell. The physiological implications of such iron reductive mechanisms are discussed.


Assuntos
Ferritinas , Ferro , Transporte de Elétrons , Ferritinas/metabolismo , Ferro/metabolismo , Cinética , Riboflavina/metabolismo , Saccharomyces cerevisiae/metabolismo
5.
Angew Chem Int Ed Engl ; 61(6): e202109005, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34633119

RESUMO

Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10-fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain/ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 µL of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60 % human serum.


Assuntos
Técnicas Biossensoriais , Ciclosporina/sangue , Técnicas Eletroquímicas , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo , Humanos
6.
Chemphyschem ; 22(19): 1967-1975, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34309163

RESUMO

Alginate composite hydrogels that exhibit highly sensitive stimuli-responsive behavior were used for signal-stimulated release of pre-loaded insulin. The alginate pores, particularly located at the periphery, were blocked by interpenetration of polyvinyl alcohol (PVA) cross-linked with 1,3-benzenediboronic acid (IPN), thus, significantly reducing uncontrolled leakage of the entrapped biomolecules. The beads were loaded with insulin and various enzymes mimicking different Boolean logic gates (AND, OR, NOR, IMP, INHIB). The enzymes were activated with biologically relevant input signals applied in four logic combinations: 0,0; 1,0; 0,1; 1,1, having the production of H2 O2 as the result of the biocatalytic reactions. The "successful" combination of the input signals leading to the H2 O2 production was different for different logic gates, following the corresponding truth tables of the logic gates. When H2 O2 was produced, boronate ester bonds were oxidized and the IPN was irreversibly degraded, thus re-opening the original pores of the hydrogel. This process allowed release of insulin from the alginate beads. The smart soft material that we have developed tackled well-known limitations of these systems and it may prove valuable in future medical diagnostics or treatments.


Assuntos
Alginatos/química , Hidrogéis/química , Ácidos Borônicos/química , Peróxido de Hidrogênio/química , Estrutura Molecular , Álcool de Polivinil/química
7.
Chemphyschem ; 21(7): 578, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32237109

RESUMO

The front cover artwork is provided by groups of Prof. Evgeny Katz and Prof. Artem Melman (Clarkson University, NY, USA) as well as Prof. Kirill Alexandrov (Queensland University of Technology, Brisbane, Australia). The image shows activation/inhibition of a chimeric enzyme with biomolecular signals and a corresponding logic network - the artistic vision. Read the full text of the Communication at 10.1002/cphc.201901050.

8.
Chemphyschem ; 21(7): 589-593, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-31755204

RESUMO

Reactions catalyzed by artificial allosteric enzymes, chimeric proteins with fused biorecognition and catalytic units, were used to mimic multi-input Boolean logic systems. The catalytic parts of the systems were represented by pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). Two biorecognition units, calmodulin or artificial peptide-clamp, were integrated into PQQ-GDH and locked it in the OFF or ON state respectively. The ligand-peptide binding cooperatively with Ca2+ cations to a calmodulin bioreceptor resulted in the enzyme activation, while another ligand-peptide bound to a clamp-receptor inhibited the enzyme. The enzyme activation and inhibition originated from peptide-induced allosteric transitions in the receptor units that propagated to the catalytic domain. While most of enzymes used to mimic Boolean logic gates operate with two inputs (substrate and co-substrate), the used chimeric enzymes were controlled by four inputs (glucose - substrate, dichlorophenolindophenol - electron acceptor/co-substrate, Ca2+ cations and a peptide - activating/inhibiting signals). The biocatalytic reactions controlled by four input signals were considered as logic networks composed of several concatenated logic gates. The developed approach allows potentially programming complex logic networks operating with various biomolecular inputs representing potential utility for different biomedical applications.


Assuntos
Calmodulina/farmacologia , Biologia Computacional , Glucose Desidrogenase/antagonistas & inibidores , Peptídeos/farmacologia , Biocatálise , Calmodulina/química , Glucose Desidrogenase/química , Glucose Desidrogenase/metabolismo , Ligantes , Lógica , Modelos Moleculares , Estrutura Molecular , Peptídeos/química
9.
Adv Exp Med Biol ; 1140: 237-250, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31347051

RESUMO

Covalent modification of proteins is extensively used in research and industry for biosensing, medical diagnostics, targeted drug delivery, and many other practical applications. The conventional method for production of protein conjugates has changed little in the last 20 years mostly relying on reactions of side chains of cysteine and lysine residues. Due to the presence of large numbers of similar reactive amino acid residues in proteins, common synthetic methods generally produce complex mixtures of products, which are difficult to separate. An emerging alternative technology for covalent modification of proteins involves formation of a covalent bond with a hexahistidine affinity tag present in a majority of recombinant proteins without interfering with other amino acid residues. The approach is based on formation of a ternary complex of the hexahistidine sequence with a bivalent metal cation chelated by ligand bearing an electrophilic Baylis-Hillman ester group capable of subsequent formation of a covalent bond with one of the histidine residues of the tag. The reaction proceeds under mild reaction conditions in neutral aqueous solutions under high dilutions (10-5 to 10-4 M) providing a stable covalent bond between the label and an imidazole residue in a hexahistidine tag at either C- or N-terminus. Because hexahistidine affinity tag methodology is a de-facto standard for preparation of recombinant proteins our approach can be easily implemented for selective derivatization of these proteins with fluorescent groups, alkynyl groups for "click" reactions, or biotinylation.


Assuntos
Histidina/química , Oligopeptídeos/química , Engenharia de Proteínas/métodos , Indicadores e Reagentes , Proteínas Recombinantes
10.
Anal Chem ; 89(18): 9990-9996, 2017 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-28721718

RESUMO

Nitroguanidine, a widely used nitramine explosive, is an environmental contaminant that is refractory, persistent, highly mobile in soils and aquifers, and yet under-researched. Nitroguanidine determination in water and soil poses an analytical challenge due its high hydrophilicity, low volatility, charge neutrality over a wide pH range, and low proton affinity which results in low electrospray interface (ESI)-MS sensitivity. A sensitive method for the determination of nitroguanidine in aqueous and soil matrices was developed. The method is based on reduction by zinc in acidic solution, hydrophobization by derivatization, preconcentration on C18 cartridge, and LC-MS quantification. The demonstrated limit of detection (LOD) reaches 5 ng/L and 22 ng/g in water and soil, respectively. Analysis of a contaminated site demonstrates that it is possible to map a contamination plume that extends over 1 km from the source of the contamination.

11.
Chemphyschem ; 18(13): 1811-1821, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28467664

RESUMO

Signal-controlled release of DNA from Fe3+ -cross-linked alginate hydrogel electrochemically deposited on an electrode surface was studied. The multiple input signals were logically processed with the help of the enzyme-biocatalyzed reactions. Boolean logic gates, OR, AND, INH, were realized with the biocatalytic reactions performed by the enzymes entrapped in the alginate film. Hydrogen peroxide produced by the enzymatic reactions resulted in the degradation of the alginate hydrogel and DNA release. The alginate degradation was facilitated by the formation of free radicals in the Fenton-type reaction catalyzed by iron cations cross-linking the alginate hydrogel. The studied approach is versatile and can be adapted to various chemical signals processed by various enzymes with differently implemented Boolean logic. This work illustrates a novel concept of functional integration of biomolecular computing and actuation.


Assuntos
Alginatos/química , Computadores Moleculares , Reagentes de Ligações Cruzadas/química , DNA/metabolismo , Compostos Férricos/química , Lógica , Animais , Biocatálise , DNA/química , Esterases/química , Esterases/metabolismo , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Peroxidase do Rábano Silvestre/química , Peroxidase do Rábano Silvestre/metabolismo , Lactato Desidrogenases/química , Lactato Desidrogenases/metabolismo , Oxigenases de Função Mista/química , Oxigenases de Função Mista/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Dióxido de Silício/química , Dióxido de Silício/metabolismo
12.
Chemphyschem ; 18(12): 1541-1551, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301717

RESUMO

We study the mechanisms involved in the release, triggered by the application of glucose, of insulin entrapped in Fe3+ -cross-linked alginate hydrogel particles further stabilized with a polyelectrolyte. Platelet-shaped alginate particles are synthesized containing enzyme glucose oxidase conjugated with silica nanoparticles, which are also entrapped in the hydrogel. Glucose diffuses in from solution, and production of hydrogen peroxide is catalyzed by the enzyme within the hydrogel. We argue that, specifically for the Fe3+ -cross-linked systems, the produced hydrogen peroxide is further converted to free radicals via a Fenton-type reaction catalyzed by the iron cations. The activity of free radicals, as well as the reduction of Fe3+ by the enzyme, and other mechanisms contribute to the decrease in density of the hydrogel. As a result, while the particles remain intact, void sizes increase and release of insulin ensues and is followed experimentally. A theoretical description of the involved processes is proposed and utilized to fit the data. It is then used to study the long-time properties of the release process that offers a model for designing new drug-release systems.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Compostos Férricos/metabolismo , Glucose Oxidase/metabolismo , Glucose/metabolismo , Hidrogéis/metabolismo , Insulina/metabolismo , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Glucose/química , Glucose Oxidase/química , Hidrogéis/química , Insulina/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1861(12): 3257-3262, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943300

RESUMO

BACKGROUND: Ferritins are ubiquitous multi-subunit iron storage and detoxification proteins that play a critical role in iron homeostasis. Ferrous ions that enter the protein's shell through hydrophilic channels are rapidly oxidized at dinuclear centers on the H-subunit before transfer to the protein's cavity for storage. The mechanisms of iron loading have been extensively studied, but little is known about iron mobilization. Fe(III) reduction can occur via rapid reduction by suitable reducing agents followed by chelation of Fe(II) ions or via direct and slow Fe(III) chelation. Here, the iron release kinetics from ferritin by FMNH2 in the presence of various chaotropic agents are studied and their in-vivo physiological significance discussed. METHODS: The iron release kinetics from horse and human ferritins by FMNH2 were monitored at 522nm where the Fe(II)-bipyridine complex absorbs. The experiments were performed in the presence of different concentrations of three chaotropic agents, urea, guanidine HCl, and triton. RESULTS AND CONCLUSIONS: Under our experimental conditions, iron reductive mobilization by the non-enzymatic FMN/NAD(P)H system is limited by the concentration of FMNH2 and is independent on the type or amount of chaotropes present. Diffusion of FMNH2 through the ferritin pores is an unlikely mechanism for ferritin iron reduction. An iron mobilization mechanism involving rapid electron transfer through the protein shell is discussed. GENERAL SIGNIFICANCE: Caution must be exercised when interpreting the kinetics of iron mobilization from ferritin using the FMN/NAD(P)H system. The kinetics are highly dependent on the amount of dissolved oxygen and the concentration of reagents used.


Assuntos
Ferritinas/química , Mononucleotídeo de Flavina/farmacologia , Hidroquinonas/farmacologia , Ferro/química , Animais , Transporte de Elétrons , Guanidina/farmacologia , Cavalos , Humanos , Cinética , Octoxinol/farmacologia , Oxirredução , Ureia/farmacologia
14.
Biochim Biophys Acta ; 1830(10): 4669-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23726988

RESUMO

BACKGROUND: Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood. Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo. METHODS: Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)-bipyridine complex using a Cary 50 Bio UV-Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode. RESULTS: The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed. CONCLUSIONS: Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin. GENERAL SIGNIFICANCE: There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.


Assuntos
Ferritinas/metabolismo , Mononucleotídeo de Flavina/metabolismo , Ferro/metabolismo , Animais , Cavalos , Humanos , NAD/metabolismo , Espectrofotometria Ultravioleta
15.
Chirality ; 26(1): 56-60, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272955

RESUMO

A series of chiral phosphite-type ligands was tested in asymmetric Ir-catalyzed hydrogenation of quinolines and 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole. Hydrogenation of quinaldine hydrochloride provided superior enantioselectivity up to 65% ee compared to quinaldine free base. The ligands were tested for the first time in the asymmetric Ir-Ircatalyzed hydrogenation of 2,4,5,6-tetrahydro-1H-pyrazino(3,2,1-j,k)carbazole yielding the antidepressant drug, pirlindole.


Assuntos
Compostos Heterocíclicos/química , Irídio/química , Fosfitos/química , Catálise , Compostos Heterocíclicos/síntese química , Hidrogenação , Ligantes , Estrutura Molecular
16.
Biomacromolecules ; 13(8): 2465-71, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22775540

RESUMO

Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.


Assuntos
Alginatos/química , Materiais Biocompatíveis/síntese química , Cloretos/química , Complexos de Coordenação/síntese química , Compostos Férricos/química , Hidrogéis/síntese química , Fotólise , Materiais Biocompatíveis/química , Materiais Biocompatíveis/efeitos da radiação , Ácidos Carboxílicos/química , Ácidos Carboxílicos/efeitos da radiação , Coloides , Complexos de Coordenação/química , Complexos de Coordenação/efeitos da radiação , Compostos Ferrosos/química , Ácido Glucurônico/química , Ouro/química , Ácidos Hexurônicos/química , Hidrogéis/química , Hidrogéis/efeitos da radiação , Nanopartículas Metálicas/química , Oxirredução , Lactato de Sódio/química , Soluções , Alicerces Teciduais , Raios Ultravioleta
17.
Bioorg Med Chem Lett ; 22(14): 4575-8, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738632

RESUMO

Structural factors behind erm macrolide resistance were studied through synthesis of new macrolide derivates possessing truncated desosamine sugar moieties and subsequent determination of their antibacterial activity. Synthesized compounds with 2'-deoxy and 3'-desmethyl desosamine rings demonstrated decreased antibacterial activity on the native Staphylococcus aureus strain and were inactive against constitutively resistance S. aureus. The obtained results indicate that steric repulsion between the dimethylated A2058 and desosamine ring cannot be considered as a primary reason for erm-resistance.


Assuntos
Amino Açúcares/química , Antibacterianos/síntese química , Macrolídeos/síntese química , Amino Açúcares/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Macrolídeos/farmacologia , Viabilidade Microbiana/efeitos dos fármacos , Modelos Moleculares , Estrutura Molecular , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
18.
ACS Appl Mater Interfaces ; 13(29): 33830-33839, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34264645

RESUMO

Enzymes immobilized on a nano-structured surface were used to switch the activity of one enzyme by a local pH change produced by another enzyme. Immobilized amyloglucosidase (AMG) and trypsin were studied as examples of the pH-dependent switchable "target enzymes." The reactions catalyzed by co-immobilized urease or esterase were increasing or decreasing the local pH, respectively, thus operating as "actuator enzymes." Both kinds of the enzymes, producing local pH changes and changing biocatalytic activity with the pH variation, were orthogonal in terms of the biocatalytic reactions; however, their operation was coupled with the local pH produced near the surface with the immobilized enzymes. The "target enzymes" (AMG and trypsin) were changed reversibly between the active and inactive states by applying input signals (urea or ester, substrates for the urease or esterase operating as the "actuator enzymes") and washing them out with a new portion of the background solution. The developed approach can potentially lead to switchable operation of several enzymes, while some of them are inhibited when the others are activated upon receiving external signals processed by the "actuator enzymes." More complex systems with branched biocatalytic cascades can be controlled by orthogonal biocatalytic reactions activating selected pathways and changing the final output.


Assuntos
Hidrolases de Éster Carboxílico/química , Enzimas Imobilizadas/química , Glucana 1,4-alfa-Glucosidase/química , Tripsina/química , Urease/química , Animais , Aspergillus niger/enzimologia , Biocatálise , Canavalia/enzimologia , Bovinos , Ensaios Enzimáticos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Dióxido de Silício/química , Suínos
19.
ACS Appl Bio Mater ; 4(12): 8487-8497, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-35005932

RESUMO

"Smart" drug-delivery systems have significant potential to increase therapeutic efficiency, avoid undesired immune responses, and minimize drug side effects. Herein, we report on an innovative strategy to control the drug release process using two magneto-activated materials operating in the system. One of them, a polyvinyl alcohol (PVA)-diboronate (DB)-interpenetrated (IPN) alginate (Alg) microgel nanocomposite (PVA-DB-IPN-Alg) loaded with magnetic nanoparticles (MNPs), is acting as a drug-delivery system. The drugs or model (bio)molecules are loaded in the PVA-DB-IPN-Alg and then released upon receiving a magnetic signal. Another component of the system is represented with the MNPs functionalized with the glucose oxidase (GOx) enzyme, GOx-MNPs. The immobilized GOx biocatalytically produces H2O2 in the presence of glucose and oxygen, while the PVA-DB-IPN-Alg is decomposed/dissolved by reacting with H2O2. In the absence of a magnet, the biocatalytically produced H2O2 was mostly decomposed by the catalase enzyme present in the solution, thus not reaching the alginate microgel. Upon aggregation of these two types of particles induced by a magnet, the GOx-MNPs produced H2O2in situ increasing locally its concentration, degrading the PVA-DB-IPN, thus opening pores in the alginate hydrogel resulting in a faster release of the entrapped payload. The release of the payload was confirmed in physiological complex environments, exemplified with human serum, demonstrating the stability and functionality of the materials in biological fluids. The release rate was strongly dependent on the concentration of catalase but not dependent on glucose concentration. The magneto-induced release process was confirmed for the small model protein payload, such as bovine serum albumin (BSA), as well as the trastuzumab monoclonal antibody (TmAb). For the latter, the release rate was up to 3.3 times higher in the presence of the magnet than in the absence of it in the human serum. We expect that the drug-delivery concept developed by these materials can find useful applications in the emerging field of "smart" materials in immunotherapy.


Assuntos
Microgéis , Nanocompostos , Alginatos , Anticorpos Monoclonais , Catalase , Glucose , Glucose Oxidase , Humanos , Peróxido de Hidrogênio , Fenômenos Magnéticos , Álcool de Polivinil
20.
Bioelectrochemistry ; 138: 107735, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33482577

RESUMO

The Implication (IMPLY) and Inhibition (INHIB) Boolean logic gates were realized using switchable chimeric pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH-Clamp) containing a fused affinity clamp unit recognizing a signal-peptide. The second component of the logic gate was the wild-type PQQ-glucose dehydrogenase working cooperatively with the PQQ-GDH-Clamp enzyme. The IMPLY and INHIB gates were realized using the same enzyme composition activated with differently defined input signals, thus representing reconfigurable logic systems. The logic gates were first tested while operating in a solution with optical analysis of the output signals. Then, the enzymes were immobilized on a buckypaper electrode for electrochemical transduction of the output signals. The switchable modified electrodes mimicking the IMPLY or INHIB logic gates were integrated with an oxygen-reducing electrode modified with bilirubin oxidase to operate as a biofuel cell activated/inhibited by various input signal combinations processed either by IMPLY or INHIB logic gates. The switchable biofuel cell was used as a self-powered device triggering molecule release function controlled by the logically processed molecule signals.


Assuntos
Eletroquímica/métodos , Lógica , Fontes de Energia Bioelétrica , Eletrodos , Glucose Desidrogenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA