Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Allergy Clin Immunol ; 153(5): 1306-1318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38181841

RESUMO

BACKGROUND: Airway obstruction caused by viscous mucus is an important pathophysiologic characteristic of persistent inflammation, which can result in organ damage. OBJECTIVE: We investigated the hypothesis that the biophysical characteristics of accumulating granulocytes affect the clinical properties of mucus. METHODS: Surgically acquired nasal mucus samples from patients with eosinophilic chronic rhinosinusitis and neutrophil-dominant, noneosinophilic chronic rhinosinusitis were evaluated in terms of computed tomography density, viscosity, water content, wettability, and protein composition. Isolated human eosinophils and neutrophils were stimulated to induce the formation of extracellular traps, followed by the formation of aggregates. The biophysical properties of the aggregated cells were also examined. RESULTS: Mucus from patients with eosinophilic chronic rhinosinusitis had significantly higher computed tomography density, viscosity, dry weight, and hydrophobicity compared to mucus from patients with noneosinophilic chronic rhinosinusitis. The levels of eosinophil-specific proteins in mucus correlated with its physical properties. Eosinophil and neutrophil aggregates showed physical and pathologic characteristics resembling those of mucus. Cotreatment with deoxyribonuclease and heparin, which slenderizes the structure of eosinophil extracellular traps, efficiently induced reductions in the viscosity and hydrophobicity of both eosinophil aggregates and eosinophilic mucus. CONCLUSIONS: The present study elucidated the pathogenesis of mucus stasis in infiltrated granulocyte aggregates from a novel perspective. These findings may contribute to the development of treatment strategies for eosinophilic airway diseases.


Assuntos
Eosinófilos , Armadilhas Extracelulares , Muco , Neutrófilos , Rinossinusite , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Agregação Celular , Doença Crônica , Eosinófilos/imunologia , Armadilhas Extracelulares/imunologia , Armadilhas Extracelulares/metabolismo , Muco/metabolismo , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Neutrófilos/imunologia , Rinossinusite/imunologia , Rinossinusite/patologia , Viscosidade
2.
J Leukoc Biol ; 116(2): 321-334, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38466831

RESUMO

Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.


Assuntos
Eosinófilos , Viroses , Humanos , Eosinófilos/imunologia , Eosinófilos/ultraestrutura , Viroses/imunologia , Viroses/patologia , Animais , Mitocôndrias/ultraestrutura , Mitocôndrias/imunologia
3.
Front Allergy ; 5: 1448007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39148911

RESUMO

Eosinophil granulocytes, a specialized subset of white blood cells, have traditionally been associated with allergic responses and parasitic infections. However, recent research has unveiled their versatile roles in immune regulation beyond these classical functions. This review highlights the emerging field of eosinophil biology, with a particular focus on their release of extracellular vesicles (EVs) and extracellular DNA traps (EETs). It further explores potential implications of eosinophil-derived EVs and EETs for immune responses during inflammatory diseases. The release of EVs/EETs from eosinophils, which also affects the eosinophils themselves, may influence both local and systemic immune reactions, affecting the pathophysiology of conditions such as airway inflammation, chronic rhinosinusitis and atopic dermatitis.

4.
J Leukoc Biol ; 116(2): 398-408, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527801

RESUMO

Eosinophil sombrero vesicles are large tubular carriers resident in the cytoplasm of human eosinophils, identifiable by transmission electron microscopy, and important for immune mediator transport. Increased formation of sombrero vesicles occurs in activated eosinophils in vitro and in vivo. In tissue sites of eosinophilic cytolytic inflammation, extracellular eosinophil sombrero vesicles are noted, but their frequency and significance in eosinophil-associated diseases remain unclear. Here, we performed comprehensive quantitative transmission electron microscopy analyses and electron tomography to investigate the numbers, density, integrity, and 3-dimensional structure of eosinophil sombrero vesicles in different biopsy tissues from 5 prototypic eosinophil-associated diseases (eosinophilic chronic rhinosinusitis/nasal sinuses, ulcerative colitis/intestines, hypereosinophilic syndrome/skin, dermatitis/skin, and schistosomiasis/rectum). The morphology of extracellular eosinophil sombrero vesicles was also compared with that of cytoplasmic eosinophil sombrero vesicles, isolated by subcellular fractionation from peripheral blood eosinophils. We demonstrated that (i) eosinophil cytolysis, releasing intact sombrero vesicles and membrane-bound granules, is a consistent event in all eosinophil-associated diseases; (ii) eosinophil sombrero vesicles persist intact even after complete disintegration of all cell organelles, except granules (late cytolysis); (iii) the eosinophil sombrero vesicle population, composed of elongated, curved, and typical sombreros, and the eosinophil sombrero vesicle 3-dimensional architecture, diameter, and density remain unchanged in the extracellular matrix; (iv) free eosinophil sombrero vesicles closely associate with extracellular granules; and (v) free eosinophil sombrero vesicles also associate with externalized chromatin during eosinophil ETosis. Remarkably, eosinophil sombrero vesicles appeared on the surface of other cells, such as plasma cells. Thus, eosinophil cytolysis/ETosis can secrete intact sombrero vesicles, alongside granules, in inflamed tissues of eosinophil-associated diseases, potentially serving as propagators of eosinophil immune responses after cell death.


Assuntos
Degranulação Celular , Eosinófilos , Vesículas Extracelulares , Humanos , Eosinófilos/imunologia , Eosinófilos/patologia , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Masculino , Eosinofilia/imunologia , Eosinofilia/patologia , Síndrome Hipereosinofílica/patologia , Síndrome Hipereosinofílica/imunologia
5.
JHEP Rep ; 6(2): 100984, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38293685

RESUMO

Background & Aims: Lipid droplet (LD) accumulation in cells and tissues is understood to be an evolutionarily conserved tissue tolerance mechanism to prevent lipotoxicity caused by excess lipids; however, the presence of excess LDs has been associated with numerous diseases. Sepsis triggers the reprogramming of lipid metabolism and LD accumulation in cells and tissues, including the liver. The functions and consequences of sepsis-triggered liver LD accumulation are not well known. Methods: Experimental sepsis was induced by CLP (caecal ligation and puncture) in mice. Markers of hepatic steatosis, liver injury, hepatic oxidative stress, and inflammation were analysed using a combination of functional, imaging, lipidomic, protein expression and immune-enzymatic assays. To prevent LD formation, mice were treated orally with A922500, a pharmacological inhibitor of DGAT1. Results: We identified that liver LD overload correlates with liver injury and sepsis severity. Moreover, the progression of steatosis from 24 h to 48 h post-CLP occurs in parallel with increased cytokine expression, inflammatory cell recruitment and oxidative stress. Lipidomic analysis of purified LDs demonstrated that sepsis leads LDs to harbour increased amounts of unsaturated fatty acids, mostly 18:1 and 18:2. An increased content of lipoperoxides within LDs was also observed. Conversely, the impairment of LD formation by inhibition of the DGAT1 enzyme reduces levels of hepatic inflammation and lipid peroxidation markers and ameliorates sepsis-induced liver injury. Conclusions: Our results indicate that sepsis triggers lipid metabolism alterations that culminate in increased liver LD accumulation. Increased LDs are associated with disease severity and liver injury. Moreover, inhibition of LD accumulation decreased the production of inflammatory mediators and lipid peroxidation while improving tissue function, suggesting that LDs contribute to the pathogenesis of liver injury triggered by sepsis. Impact and Implications: Sepsis is a complex life-threatening syndrome caused by dysregulated inflammatory and metabolic host responses to infection. The observation that lipid droplets may contribute to sepsis-associated organ injury by amplifying lipid peroxidation and inflammation provides a rationale for therapeutically targeting lipid droplets and lipid metabolism in sepsis.

6.
An. acad. bras. ciênc ; 89(3,supl): 2053-2073, 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-886784

RESUMO

ABSTRACT This study aimed to further investigate the cytotoxicity against tumor cell lines and several bacterial strains of Annona squamosa and its mode of action. Methanol extracts of A. squamosa leaves (ASL) and seeds (ASS) were used. ASL showed significant antibacterial activity against S. aureus, K. pneumoniae and E. faecalis with MIC values of 78, 78 and 39 µg/mL respectively. Moreover, ASL exhibited significant biofilm disruption, rapid time dependent kinetics of bacterial killing, increased membrane permeability and significantly reduced the cell numbers and viability. Regarding the cytotoxicity against tumor cell lines, ASS was more active against Jurkat and MCF-7 cells, with CI50 1.1 and 2.1 µg/mL, respectively. ASL showed promising activity against Jurkat and HL60, with CI50 4.2 and 6.4 µg/mL, respectively. Both extracts showed lower activity against VERO cells and reduced the clonogenic survival at higher concentrations (IC90) to MCF-7 and HCT-116 lineages. The alkaloids anonaine, asimilobine, corypalmine, liriodenine nornuciferine and reticuline were identified in extracts by UPLC-ESI-MS/MS analysis. This study reinforced that A. squamosa presents a remarkable phytomedicinal potential and revealed that its antimicrobial mechanism of action is related to bacterial membrane destabilization.


Assuntos
Humanos , Animais , Staphylococcus aureus/efeitos dos fármacos , Extratos Vegetais/farmacologia , Enterococcus faecalis/efeitos dos fármacos , Annona/química , Klebsiella pneumoniae/efeitos dos fármacos , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Membrana Celular/efeitos dos fármacos , Chlorocebus aethiops , Linhagem Celular Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA