Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(19): 13236-13246, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701635

RESUMO

Fluids under extreme confinement show characteristics significantly different from those of their bulk counterpart. This work focuses on water confined within the complex cavities of highly hydrophobic metal-organic frameworks (MOFs) at high pressures. A combination of high-pressure intrusion-extrusion experiments with molecular dynamic simulations and synchrotron data reveals that supercritical transition for MOF-confined water takes place at a much lower temperature than in bulk water, ∼250 K below the reference values. This large shifting of the critical temperature (Tc) is attributed to the very large density of confined water vapor in the peculiar geometry and chemistry of the cavities of Cu2tebpz (tebpz = 3,3',5,5'-tetraethyl-4,4'-bipyrazolate) hydrophobic MOF. This is the first time the shift of Tc is investigated for water confined within highly hydrophobic nanoporous materials, which explains why such a large reduction of the critical temperature was never reported before, neither experimentally nor computationally.

2.
Small ; : e2402173, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113337

RESUMO

Liquid porosimetry experiments reveal a peculiar trend of the intrusion pressure of water in hydrophobic Cu2(3,3',5,5'-tetraethyl-4,4'-bipyrazolate) MOF. At lower temperature (T) range, the intrusion pressure (Pi) increases with T. For higher T values, Pi first reaches a maximum and then decreases. This is at odds with the Young-Laplace law, which for systems showing a continuous decrease of contact angle with T predicts a corresponding reduction of the intrusion pressure. Though the Young-Laplace law is not expected to provide quantitative predictions at the subnanoscale of Cu2(tebpz) pores, the physical intuition suggests that to a reduction of their hydrophobicity corresponds a reduction of the Pi. Molecular dynamics simulations and sychrothron experiments allowed to clarify the mechanism of the peculiar trend of Pi with T. At increasing temperatures the vapor density within the MOF' pores grows significantly, bringing the corresponding partial pressure to ≈5 MPa. This pressure, which is consistent with the shift of Pi observed in liquid porosimetry, represents a threshold to be overcame before intrusion takes place. Beyond some value of temperature, the phenomenon of reduction of hydrophobicity (and water surface tension) dominated over the opposite effect of increase of vapor pressure and Pi inverts its trend with T.

3.
J Chem Phys ; 161(2)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-38990116

RESUMO

MiMiC is a framework for performing multiscale simulations in which loosely coupled external programs describe individual subsystems at different resolutions and levels of theory. To make it highly efficient and flexible, we adopt an interoperable approach based on a multiple-program multiple-data (MPMD) paradigm, serving as an intermediary responsible for fast data exchange and interactions between the subsystems. The main goal of MiMiC is to avoid interfering with the underlying parallelization of the external programs, including the operability on hybrid architectures (e.g., CPU/GPU), and keep their setup and execution as close as possible to the original. At the moment, MiMiC offers an efficient implementation of electrostatic embedding quantum mechanics/molecular mechanics (QM/MM) that has demonstrated unprecedented parallel scaling in simulations of large biomolecules using CPMD and GROMACS as QM and MM engines, respectively. However, as it is designed for high flexibility with general multiscale models in mind, it can be straightforwardly extended beyond QM/MM. In this article, we illustrate the software design and the features of the framework, which make it a compelling choice for multiscale simulations in the upcoming era of exascale high-performance computing.

4.
J Phys Chem C Nanomater Interfaces ; 128(29): 12036-12045, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39081555

RESUMO

Forced wetting (intrusion) and spontaneous dewetting (extrusion) of hydrophobic/lyophobic nanoporous materials by water/nonwetting liquid are of great importance for a broad span of technological and natural systems such as shock-absorbers, molecular springs, separation, chromatography, ion channels, nanofluidics, and many more. In most of these cases, the process of intrusion-extrusion is not complete due to the stochastic nature of external stimuli under realistic operational conditions. However, understanding of these partial processes is limited, as most of the works are focused on an idealized complete intrusion-extrusion cycle. In this work, we show an experimental system operating under partial intrusion/extrusion conditions and present a simple model that captures its main features. We rationalize these operational conditions in terms of the pore entrance and cavity size distributions of the material, which control the range of intrusion/extrusion pressures.

5.
Curr Opin Struct Biol ; 86: 102821, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38688076

RESUMO

The complexity of biological systems and processes, spanning molecular to macroscopic scales, necessitates the use of multiscale simulations to get a comprehensive understanding. Quantum mechanics/molecular mechanics (QM/MM) molecular dynamics (MD) simulations are crucial for capturing processes beyond the reach of classical MD simulations. The advent of exascale computing offers unprecedented opportunities for scientific exploration, not least within life sciences, where simulations are essential to unravel intricate molecular mechanisms underlying biological processes. However, leveraging the immense computational power of exascale computing requires innovative algorithms and software designs. In this context, we discuss the current status and future prospects of multiscale biomolecular simulations on exascale supercomputers with a focus on QM/MM MD. We highlight our own efforts in developing a versatile and high-performance multiscale simulation framework with the aim of efficient utilization of state-of-the-art supercomputers. We showcase its application in uncovering complex biological mechanisms and its potential for leveraging exascale computing.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Software , Algoritmos
6.
ACS Appl Mater Interfaces ; 16(4): 5286-5293, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38258752

RESUMO

Wetting of a solid by a liquid is relevant for a broad range of natural and technological processes. This process is complex and involves the generation of heat, which is still poorly understood especially in nanoconfined systems. In this article, scanning transitiometry was used to measure and evaluate the pressure-driven heat of intrusion of water into solid ZIF-8 powder within the temperature range of 278.15-343.15 K. The conditions examined included the presence and absence of atmospheric gases, basic pH conditions, solid sample origins, and temperature. Simultaneously with these experiments, molecular dynamics simulations were conducted to elucidate the changing behavior of water as it enters into ZIF-8. The results are rationalized within a temperature-dependent thermodynamic cycle. This cycle describes the temperature-dependent process of ZIF-8 filling, heating, emptying, and cooling with respect to the change of internal energy of the cycle from the calculated change in the specific heat capacity of the system. At 298 K the experimental heat of intrusion per gram of ZIF-8 was found to be -10.8 ± 0.8 J·g-1. It increased by 19.2 J·g-1 with rising temperature to 343 K which is in a reasonable match with molecular dynamic simulations that predicted 16.1 J·g-1 rise. From these combined experiments, the role of confined water in heat of intrusion of ZIF-8 is further clarified.

7.
J Phys Chem Lett ; 15(4): 880-887, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241150

RESUMO

Heat and the work of compression/decompression are among the basic properties of thermodynamic systems. Being relevant to many industrial and natural processes, this thermomechanical energy is challenging to tune due to fundamental boundaries for simple fluids. Here via direct experimental and atomistic observations, we demonstrate, for fluids consisting of nanoporous material and a liquid, one can overcome these limitations and noticeably affect both thermal and mechanical energies of compression/decompression exploiting preferential intrusion of water from aqueous solutions into subnanometer pores. We hypothesize that this effect is due to the enthalpy of dilution manifesting itself as the aqueous solution concentrates upon the preferential intrusion of pure water into pores. We suggest this genuinely subnanoscale phenomenon can be potentially a strategy for controlling the thermomechanical energy of microporous liquids and tuning the wetting/dewetting heat of nanopores relevant to a variety of natural and technological processes spanning from biomedical applications to oil-extraction and renewable energy.

8.
Nat Commun ; 15(1): 5076, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871721

RESUMO

Although coveted in applications, few materials expand when subject to compression or contract under decompression, i.e., exhibit negative compressibility. A key step to achieve such counterintuitive behaviour is the destabilisations of (meta)stable equilibria of the constituents. Here, we propose a simple strategy to obtain negative compressibility exploiting capillary forces both to precompress the elastic material and to release such precompression by a threshold phenomenon - the reversible formation of a bubble in a hydrophobic flexible cavity. We demonstrate that the solid part of such metastable elastocapillary systems displays negative compressibility across different scales: hydrophobic microporous materials, proteins, and millimetre-sized laminae. This concept is applicable to fields such as porous materials, biomolecules, sensors and may be easily extended to create unexpected material susceptibilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA