Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Water Sci Technol ; 87(6): 1529-1541, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37001163

RESUMO

Wastewater from the textile industry contains high concentrations of pollutants, so the wastewater must be treated before it is discharged. In addition, the reuse of treated wastewater should be considered from an environmental point of view, as large volumes of wastewater are produced. Since textile wastewater mainly contains dyestuffs, it must be treated effectively using environmentally friendly technologies. Membrane processes are widely used in textile wastewater treatment as they have distinct advantages over conventional wastewater treatment methods. This study reports the pilot-scale manufacturing and characterization of three different NF membranes. Three different types of membranes were fabricated. The fabricated membranes were compared through characterization by surface properties, chemical structure and morphology. Membranes were tested for pure water flux. Then the synthetic wastewater (SWW) was tested for flux and rejection. Lastly, the textile wastewater was tested. The textile wastewater flux of pure piperazine (PIP), 60% S-DADPS and 0.04% halloysite nanotubes (HNTs) were 22.42, 79.58 and 40.06 L m-2 h-1. It has been proven that the 60% s-DADPS membrane provides up to four times improvement in wastewater flux and simultaneously. In addition, NF membranes produced using HNT and sDADPS on a pilot scale have brought innovation to the literature with the good results obtained.


Assuntos
Nanotubos , Purificação da Água , Águas Residuárias , Argila , Membranas Artificiais , Filtração , Purificação da Água/métodos , Indústria Têxtil , Têxteis
2.
Water Sci Technol ; 83(2): 271-283, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33504693

RESUMO

In this paper, ultrafiltration (UF) flat sheet membranes were manufactured by introducing two diverse halloysite nanotubes (HNT) size (5 µm and 63 µm) and five different (0, 0.63, 1.88, 3.13, 6.30 wt %) ratios by wet phase inversion. Some characterization methods which are contact angle, zeta potential, viscosity, scanning electron microscopy (SEM) and Young's modulus measurements were used for ultrafiltration membranes. Synthetic dye waters which were Setazol Red and Reactive Orange were used for filtration performance tests. These dye solutions were filtered in three different pH conditions and three different temperature conditions for pH and temperature resistance to understand how flux and removal efficiency change. The best water permeability results were obtained as 190.5 LMH and 192 LMH, for halloysite nanotubes (HNT) sizes of 5 µm and 63 µm respectively. The best water and dye performance of UF membrane contains 1.88% w/w ratio of HNT, which showed increased water flux and dye flux of membranes according to different HNT concentrations including ultrafiltration membranes.


Assuntos
Nanocompostos , Nanotubos , Argila , Filtração , Membranas Artificiais , Ultrafiltração
3.
Soft Matter ; 13(26): 4580-4590, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28590480

RESUMO

We report molecular dynamics in the rigid amorphous fraction (RAF) of the polymer bound at the interfaces with nanoparticles in polymer nanocomposites and calculate the glass transition temperature, Tg, for this bound layer of polymer. We follow the '3-phase-model' for semicrystalline polymers where the polymer matrix consists of the crystalline fraction (CF), the mobile amorphous fraction (MAF) and the RAF. While the amorphous polymer bound by crystallites is completely rigid, neither contributing to the glass transition, nor displaying molecular dynamics, the amorphous polymer bound at the interfaces with filler displays decelerated dynamics, as compared to the bulk polymer. Reports in the literature suggest a discrepancy between Tg values obtained by Differential Scanning Calorimetry (DSC) and by Dielectric Relaxation Spectroscopy (DRS). As a plausible explanation we suggest that DRS results in Tg values taking into account the bound polymer, whereas DSC does not. For this investigation we use semicrystalline polyurethane-urea/SiO2 nanocomposites and employ, next to DSC and DRS, SEM, SAXS and WAXS for morphological characterization. It is our intention to use DRS as a tool for investigating the RAF.

4.
Langmuir ; 28(40): 14192-201, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22957824

RESUMO

We demonstrated a facile method to produce perfectly hydrophobic surfaces (advancing and receding angles both 180°) via electrospraying. When a copolymer of styrene and a perfluoroacrylate monomer was electrosprayed in good solvents, surfaces composed of micrometer size beads were formed and fairly low threshold water sliding angles could be achieved. Addition of high boiling point poor solvents to the solutions resulted nanoscale roughness on the beads due to a possible phase separation that occurs in a predominantly poor solvent environment. However, sliding angles were not zero even on the nanoscale roughness dominated topographies achieved by this method. On the other hand, when the electrospraying process parameters were set such that micrometer size hills of nanoscopically rough beads were formed, 0° sliding angles were measured. Videos of droplets recorded and the adhesive forces measured during a contact and release experiment revealed that these dual scale rough surfaces were indeed perfectly hydrophobic. Application of the method with other binary good solvent-poor solvent systems also resulted in perfect hydrophobicity. Overall results showed how the differences in surface topology affected the wettability of surfaces within a very narrow range between perfect and extreme hydrophobicity (advancing and receding angles both close to 180°).


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia/métodos , Polímeros/química , Solventes/química , Dessecação , Microesferas , Nanopartículas/química , Propriedades de Superfície , Volatilização
5.
Nanomaterials (Basel) ; 11(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802645

RESUMO

The morphology of nanostructures is a vital parameter to consider in components comprised of materials exhibiting specific functionalities. The number of process steps and the need for high temperatures can often be a limiting factor when targeting a specific morphology. Here, we demonstrate a repeatable synthesis of different morphologies of a highly crystalline monoclinic phase of vanadium dioxide (VO2(M)) using a one-step hydrothermal method. By adjusting the synthesis parameters, such as pH, temperature, and reducing agent concentration in the precursor, VO2 nanostructures with high uniformity and crystallinity are achieved. Some of these morphologies were obtained via the choice of the reducing agent that allowed us to skip the annealing step. Our results indicate that the morphologies of the nanostructures are very sensitive to the hydrazine hydrate (N2H4.H2O) concentration. Another reducing agent, dodecylamine, was used to achieve well-organized and high-quality VO2(M) nanotubes. Differential scanning calorimetry (DSC) experiments revealed that all samples display the monoclinic-to-tetragonal structural transition (MTST) regardless of the morphology, albeit at different temperatures that can be interpreted as the variations in overheating and undercooling limits. VO2(M) structures with a higher surface to volume ratio exhibit a higher overheating limit than those with low ratios.

6.
Carbohydr Polym ; 201: 105-112, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30241801

RESUMO

This paper reports the synthesis of nanocomposite agarose hydrogels with improved bioactivity with the incorporation of anisotropic 2D nanosilicates (Laponite) to promote cell binding, growth and proliferation. Rheological measurements showed that the incorporation of nanosilicates slightly increased the gelation temperature (Tgel). The use of higher nanosilicate content at the constant agarose concentration improved the mechanical properties of the gels. Due to the non-swelling nature of agarose, the addition of nanosilicates did not result in any remarkable change in the swelling properties of the agarose gels, while collapsed agarose nanofibers were observed with the incorporation of nanosilicates. EDX analysis confirmed the presence of the embedded nanosilicates in the gel matrix. The existence of physical interactions between nanosilicate and agarose was demonstrated by FTIR over the shifting of SiO stretching band to a lower frequency. The encapsulated NIH/3T3 fibroblast cells showed enhanced proliferation and spreading in the presence of nanosilicates.


Assuntos
Proliferação de Células , Células Imobilizadas/metabolismo , Hidrogéis/química , Nanocompostos/química , Sefarose/química , Silicatos/química , Animais , Células Imobilizadas/citologia , Teste de Materiais , Camundongos , Células NIH 3T3
7.
ACS Omega ; 3(6): 6400-6410, 2018 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458823

RESUMO

Platinum (Pt)-decorated graphene-based carbon composite electrodes with controlled dimensionality were successfully fabricated via core-shell electrospinning/electrospraying techniques. In this process, multilayer graphene sheets were converted into the three different forms, fiber, sphere, and foam, by tailoring the polymer concentration, molecular weight of polymer, and applied voltage. As polymer concentration increased, continuous fibers were produced, whereas decreasing polymer concentration caused the formation of graphene-based foam. In addition, the reduction in polymer molecular weight in electrospun solution led to the creation of three-dimensional (3D) spherical structures. In this work, graphene-based foam was produced for the first time by utilizing core-shell electrospraying technology instead of available chemical vapor deposition techniques. The effect of morphologies and dimensions of carbonized graphene-based carbon electrodes on its electrochemical behavior was investigated by cyclic voltammetry and galvanostatic charge-discharge methods. Among the three different electrodes, Pt-supported 3D graphene-based spheres showed the highest specific capacitance of 118 F/g at a scan rate of 1 mV/s owing to the homogeneous decoration of Pt particles with a small diameter of 4 nm on the surface. After 1000 cycles of charging-discharging, Pt-decorated graphene-based structures showed high cyclic stability and retention of capacitance, indicating their potential as high-performance electrodes for energy storage devices.

8.
ACS Appl Mater Interfaces ; 10(11): 9873-9881, 2018 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-29474786

RESUMO

A single additive, a grafted copolymer, is designed to ensure the stability of suspensions of highly loaded iron oxide nanoparticles (IOPs) and to facilitate three-dimensional (3D) printing of these suspensions in the filament form. This poly (ethylene glycol)-grafted copolymer of N-[3(dimethylamino)propyl]methacrylamide and acrylic acid harnesses both electrostatic and steric repulsion to realize an optimum formulation for 3D printing. When used at 1.15 wt % (by the weight of IOPs), the suspension attains ∼81 wt % solid loading-96% of the theoretical limit as calculated by the Krieger-Dougherty equation. Rectangular, thick-walled toroidal, and thin-walled toroidal magnetic cores and a porous lattice structure are fabricated to demonstrate the utilization of this suspension as an ink for 3D printing. The electrical and magnetic properties of the magnetic cores are characterized through impedance spectroscopy (IS) and vibrating sample magnetometry (VSM), respectively. The IS indicates the possibility of utilizing wire-wound 3D printed cores as the inductive coils. The VSM verifies that the magnetic properties of IOPs before and after the ink formulation are kept almost unchanged because of the low dosage of the additive. This particle-targeted approach for the formulation of 3D printing inks allows embodiment of a fully aqueous system with utmost target material content.

9.
ACS Appl Mater Interfaces ; 4(2): 777-84, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22248346

RESUMO

Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.


Assuntos
Resinas Epóxi/química , Nanocompostos/química , Nanofibras/química , Nanotubos de Carbono/química , Teoria Quântica , Análise Espectral Raman , Propriedades de Superfície , Viscosidade , Molhabilidade
10.
ACS Appl Mater Interfaces ; 2(7): 1788-93, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20536248

RESUMO

The novelty of this work is based on designing the chemistry of the electrospun nanofibers, so that the resultant composites substantially benefit from cross-linking between the nanofibers and the polymer matrix. Specifically, the solution of in-house synthesized copolymers polystyrene-co-glycidyl methacrylate P(St-co-GMA) is electrospun to produce mats of surface reactive nano-to-submicron scale fibers that are accompanied later by spraying over the ethylenediamine (EDA) as a supplementary cross-linking agent for epoxy. The P(St-co-GMA)/EDA fiber mats are then embedded into an epoxy resin. Analysis of the three-point-bending mode of the composites reveals that the storage modulus of P(St-co-GMA)/EDA nanofiber-reinforced epoxy are about 10 and 2.5 times higher than that of neat and P(St-co-GMA) nanofiber-reinforced epoxy, respectively, even though the weight fraction of the nanofibers was as low as 2 wt %. The significant increase in the mechanical response is attributed to the inherently cross-linked fiber structure and the surface modification/chemistry of the electrospun fibers, that results in cross-linked polymer matrix-nanofiber interfacial bonding.


Assuntos
Nanocompostos/química , Nanocompostos/ultraestrutura , Nanofibras/química , Nanofibras/ultraestrutura , Compostos de Epóxi/química , Etilenodiaminas/química , Metacrilatos/química , Poliestirenos/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA