Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Metab Rev ; 54(4): 386-400, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36031813

RESUMO

Anti-angiogenic therapy is a practical approach to managing diseases with increased angiogenesis, such as cancer, maculopathies, and retinopathies. Considering the fundamental gaps in the knowledge of the vital pathways involved in angiogenesis and its inhibition and the insufficient efficiency of existing angiogenesis inhibitors, there is an increasing focus on the emergence of new therapeutic strategies aimed at inhibiting pathological angiogenesis. Angiogenesis is forming a new vascular network from existing vessels; endothelial cells (ECs), vascular lining cells, are the main actors of angiogenesis in physiological or pathological conditions. Switching from a quiescent state to a highly migratory and proliferative state during new vessel formation called "angiogenic switch" is driven by a "metabolic switch" in ECs, angiogenic growth factors, and other signals. As the characteristics of ECs change by altering the surrounding environment, they appear to have a different metabolism in a tumor microenvironment (TME). Therefore, pathological angiogenesis can be inhibited by targeting metabolic pathways. In the current review, we aim to discuss the EC metabolic pathways under normal and TME conditions to verify the suitability of targeting them with novel therapies.


Assuntos
Células Endoteliais , Neoplasias , Humanos , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neoplasias/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Microambiente Tumoral
2.
Front Endocrinol (Lausanne) ; 14: 1128523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113489

RESUMO

Objective: EndoC-ßH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-ßH5 cells. Methods: The sensitivity profile of EndoC-ßH5 cells to the toxic effects of interleukin-1ß (IL-1ß), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing. Results: Cytokines increased caspase-3/7 activity and cytotoxicity in EndoC-ßH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-ßH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusion: Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-ßH5 cells. This information should be useful for future studies using this novel beta-cell model.


Assuntos
Citocinas , Diabetes Mellitus Tipo 1 , Humanos , Transcriptoma , Caspase 3/genética , Interferon gama/farmacologia , Quimiocinas
3.
Mol Ther Nucleic Acids ; 23: 968-981, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33614244

RESUMO

Hypoxia modulates reparative angiogenesis, which is a tightly regulated pathophysiological process. MicroRNAs (miRNAs) are important regulators of gene expression in hypoxia and angiogenesis. However, we do not yet have a clear understanding of how hypoxia-induced miRNAs fine-tune vasoreparative processes. Here, we identify miR-130a as a mediator of the hypoxic response in human primary endothelial colony-forming cells (ECFCs), a well-characterized subtype of endothelial progenitors. Under hypoxic conditions of 1% O2, miR-130a gain-of-function enhances ECFC pro-angiogenic capacity in vitro and potentiates their vasoreparative properties in vivo. Mechanistically, miR-130a orchestrates upregulation of VEGFR2, activation of STAT3, and accumulation of HIF1α via translational inhibition of Ddx6. These findings unveil a new role for miR-130a in hypoxia, whereby it activates the VEGFR2/STAT3/HIF1α axis to enhance the vasoregenerative capacity of ECFCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA