RESUMO
Advancing approaches for drug screening are in great demand to explore natural small molecules that may play important roles in collagen biogenesis, secretion, and assembly, which may find novel lead compounds for treating collagen-related diseases or preventing skin aging. In this study, we generated a single copy insertion transgenic Pcol-19- COL-12::GFP Caenorhabditis elegans (C. elegans) strain to label epidermis collagen XII (COL-12), a cuticle structure component, and established an efficient high-content screening techniques to discover bioactive natural products in this worm strain through quantification of fluorescence imaging. We performed a preliminary screening of 614 compounds from the laboratory's library of natural small molecule compounds on the COL-12 labeling worm model, which was tested once at a single concentration of 100 µM to screen for compounds that promoted COL-12 protein amount. Besides col-12, the transcriptional levels of worm-associated collagen coding genes col-19 and sqt-3 were also examined, and none of the compounds affected their transcriptional levels. Meanwhile, the protein levels of COL-12 were significantly upregulated after treating with Danshensu, Lawsone, and Sanguinarine. The effects of these drugs on COL-12 overexpressing worms occur mainly after collagen transcription. Through various validation methods, Danshensu, Lawsone, and Sanguinarine were more effective in promoting the synthesis or secretion of COL-12.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ensaios de Triagem em Larga Escala , Colágeno/metabolismo , Animais Geneticamente ModificadosRESUMO
BACKGROUND: This study was carried out to investigate the effect of total flavonoids of Spatholobus suberectus Dunn (TFSD) on PCV2 induced oxidative stress in RAW264.7 cells. METHODS: Oxidative stress model was established in RAW264.7 cells by infecting with PCV2. Virus infected cells were then treated with various concentrations (25 mg/ml, 50 mg/ml and 100 mg/ml) of TFSD. The levels of oxidative stress related molecules (NO, ROS, GSH and GSSG) and activities of associated enzymes (SOD, MPO and XOD were analyzed using ultraviolet spectrophotometry, fluorescence method and commercialized detection kits. RESULTS: PCV2 infection induced significant increase of NO secretion, ROS generation, GSSG content, activities of both XOD and MPO, and dramatically decrease of GSH content and SOD activity in RAW264.7 cells (P < 0.05). After treating with TFSD, PCV2 induced alteration of oxidative stress related molecule levels and enzyme activities were recovered to a level similar to control. CONCLUSION: Our findings indicated that TFSD was able to regulate oxidative stress induced by PCV2 infection in RAW264.7 cells, which supports the ethnomedicinal use of this herb as an alternative or complementary therapeutic drug for reactive oxygen-associated pathologies.
Assuntos
Antioxidantes/farmacologia , Fabaceae/química , Flavonoides/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Antioxidantes/metabolismo , Sobrevivência Celular , Infecções por Circoviridae/metabolismo , Circovirus , Camundongos , Células RAW 264.7 , Superóxido Dismutase/metabolismo , SuínosRESUMO
The development of genome editing techniques based on CRISPR (Clustered regularly interspaced short palindromic repeats)-Cas9 system has revolutionized biomedical researches. It can be utilized to edit genome sequence in almost any organisms including Caenorhabditis elegans, one of the most convenient and classic genetic model animals. The application of CRISPR-Cas9 mediated genome editing in C. elegans promotes the functional analysis of gene and proteins under many physiological conditions. In this mini-review, we summarized the development of CRISPR-Cas9-based genome editing in C. elegans.
Assuntos
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Edição de Genes , Animais , Sequência de Bases , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , GenomaRESUMO
Several microscopy techniques are available today that can detect a specific protein within the cell. During the last decade live cell imaging using fluorochromes like Green Fluorescent Protein (GFP) directly attached to the protein of interest has become increasingly popular. Using GFP and similar fluorochromes the subcellular localisations and movements of proteins can be detected in a fluorescent microscope. Moreover, also the subnuclear localisation of a certain region of a chromosome can be studied using this technique. GFP is fused to the Lac Repressor protein (LacR) and ectopically expressed in the cell where tandem repeats of the lacO sequence has been inserted into the region of interest on the chromosome. The LacR-GFP will bind to the lacO repeats and that area of the genome will be visible as a green dot in the fluorescence microscope. Yeast is especially suited for this type of manipulation since homologous recombination is very efficient and thereby enables targeted integration of the lacO repeats and engineered fusion proteins with GFP. Here we describe a quantitative method for live cell analysis of fission yeast. Additional protocols for live cell analysis of fission yeast can be found, for example on how to make a movie of the meiotic chromosomal behaviour. In this particular experiment we focus on subnuclear organisation and how it is affected during gene induction. We have labelled a gene cluster, named Chr1, by the introduction of lacO binding sites in the vicinity of the genes. The gene cluster is enriched for genes that are induced early during nitrogen starvation of fission yeast. In the strain the nuclear membrane (NM) is labelled by the attachment of mCherry to the NM protein Cut11 giving rise to a red fluorescent signal. The Spindle Pole body (SPB) compound Sid4 is fused to Red Fluorescent Protein (Sid4-mRFP). In vegetatively growing yeast cells the centromeres are always attached to the SPB that is embedded in the NM. The SPB is identified as a large round structure in the NM. By imaging before and 20 minutes after depletion of the nitrogen source we can determine the distance between the gene cluster (GFP) and the NM/SPB. The mean or median distances before and after nitrogen depletion are compared and we can thus quantify whether or not there is a shift in subcellular localisation of the gene cluster after nitrogen depletion.