Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(25): 7774-7782, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38847520

RESUMO

Various methods to solve water scarcity have attracted increasing attention. However, most existing water harvesting schemes have a high demand for preparation methods and costs. Here, a multi-biomimetic double interlaced wetting Janus surface (DIWJS) was prepared by laser for effective fog collection. The as-prepared surfaces are composed of superhydrophilic points/hydrophobic substrates on the A-side and superhydrophilic stripes/hydrophobic substrates on the B-side. The interlaced wettability and superhydrophilic points on the A side are conducive to capture and permeation of droplets. The superhydrophilic stripes and interlaced wettability on the B-side are conducive to transportation and shedding of droplets. Therefore, the overall fog collection process is accelerated. The proposal of smart farm model validates broad application prospects of DIWJS. This work provides an advanced and multi-biomimetic surface and provides important insights for green, low-cost, and versatile strategies to solve water scarcity issues.

2.
Neuroimage ; 297: 120692, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38897398

RESUMO

Errors typically trigger post-error adjustments aimed at improving subsequent reactions within a single task, but little work has focused on whether these adjustments are task-general or task-specific across different tasks. We collected behavioral and electrophysiological (EEG) data when participants performed a psychological refractory period paradigm. This paradigm required them to complete Task 1 and Task 2 separated by a variable stimulus onset asynchrony (SOA). Behaviorally, post-error slowing and post-error accuracy exhibited task-general features at short SOAs but some task-specific features at long SOAs. EEG results manifest that task-general adjustments had a short-lived effect, whereas task-specific adjustments were long-lasting. Moreover, error awareness specifically conduced to the improvement of subsequent sensory processing and behavior performance in Task 1 (the task where errors occurred). These findings demonstrate that post-error adjustments rely on both transient, task-general interference and longer-lasting, task-specific control mechanisms simultaneously, with error awareness playing a crucial role in determining these mechanisms. We further discuss the contribution of central resources to the task specificity of post-error adjustments.

3.
Eur J Neurosci ; 59(11): 2995-3008, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575329

RESUMO

Having a multitude of choices can be advantageous, yet an abundance of options can be detrimental to the decision-making process. Based on existing research, the present study combined electroencephalogram and self-reported methodologies to investigate the neural mechanisms underlying the phenomenon of choice overload. Behavioural data suggested that an increase in the number of options led to negative evaluations and avoidance of choice tendencies, even in the absence of time pressure. Event-related potential results indicated that the large choice set interfered with the early visual process, as evidenced by the small P1 amplitude, and failed to attract more attentional resources in the early stage, as evidenced by the small amplitude of P2 and N2. However, the LPC amplitude was increased in the late stage, suggesting greater investment of attentional resources and higher emotional arousal. Multivariate pattern analysis revealed that the difference between small and large choice set began at around 120 ms, and the early and late stages were characterised by opposite activation patterns. This suggested that too many options interfered with early processing and necessitate continued processing at a later stage. In summary, both behavioural and event-related potential (ERP) results confirm the choice overload effect, and it was observed that individuals tend to subjectively exaggerate the choice overload effect.


Assuntos
Comportamento de Escolha , Eletroencefalografia , Potenciais Evocados , Humanos , Masculino , Eletroencefalografia/métodos , Feminino , Comportamento de Escolha/fisiologia , Potenciais Evocados/fisiologia , Adulto Jovem , Adulto , Atenção/fisiologia , Encéfalo/fisiologia
4.
Langmuir ; 40(26): 13739-13748, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38901843

RESUMO

Biomimetic surfaces with special wettability have received much attention due to their promising prospects in droplet manipulation. Although some progress has been made, the manipulation of droplets by macroscopic defects of the millimeter structure and the wetting-state transition mechanism have rarely been reported. Herein, inspired by lotus leaves and desert beetles, biomimetic surfaces with macroscopic defects are prepared by laser processing and chemical modification. Various functions of droplet manipulation are achieved by controlling the millimeter-scale macroscopic defects, such as droplet capture, motion trajectory changing, and liquid well. And a droplet bottom expansion phenomenon is proposed: wetting-state transition in superhydrophobic regions around defects. The "edge failure effect" is proposed to explain the force analysis of droplet capture and the droplet bottom expansion to distinguish it from the adhesion phenomenon presented by the droplet sliding. 53.28° is defined as the expanded saturated angle of the as-prepared surface, which is used to distinguish whether the defect could cause the droplet bottom expansion. An enhanced edge failure effect experiment is designed to make the droplet bottom expansion more intuitive. This work provides a mechanistic explanation of the surfaces that utilize macroscopic defects for droplet manipulation. It can be applied to the monitoring of droplet storage limits, providing a perspective on the design and optimization of superhydrophobic surfaces with droplet manipulation.

5.
Langmuir ; 40(20): 10589-10599, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728854

RESUMO

Optically transparent glass with antifogging and antibacterial properties is in high demand for endoscopes, goggles, and medical display equipment. However, many of the previously reported coatings have limitations in terms of long-term antifogging and efficient antibacterial properties, environmental friendliness, and versatility. In this study, inspired by catfish and sphagnum moss, a novel photoelectronic synergy antifogging and antibacterial coating was prepared by cross-linking polyethylenimine-modified titanium dioxide (PEI-TiO2), polyvinylpyrrolidone (PVP), and poly(acrylic acid) (PAA). The as-prepared coating could remain fog-free under hot steam for more than 40 min. The experimental results indicate that the long-term antifogging properties are due to the water absorption and spreading characteristics. Moreover, the organic-inorganic hybrid of PEI and TiO2 was first applied to enhance the antibacterial performance. The Staphylococcus aureus and the Escherichia coli growth inhibition rates of the as-prepared coating reached 97 and 96% respectively. A photoelectronic synergy antifogging and antibacterial mechanism based on the positive electrical and photocatalytic properties of PEI-TiO2 was proposed. This investigation provides insight into designing multifunctional bioinspired surface materials to realize antifogging and antibacterial that can be applied to medicine and daily lives.


Assuntos
Antibacterianos , Escherichia coli , Staphylococcus aureus , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Titânio/química , Titânio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Testes de Sensibilidade Microbiana , Povidona/química , Propriedades de Superfície
6.
Cereb Cortex ; 33(21): 10761-10769, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37702253

RESUMO

Attentional blink pertains to the performance of participants with a severe decline in identifying the second target presented after the first target reported correctly within 200-500 ms in a rapid serial visual presentation. The current study was conducted to investigate the neural mechanism of the effect of the distractor (D1) that immediately follows first target to attentional blink by altering whether D1 was substituted with a blank with electroencephalography recording. The results showed that D1 interfered with the attentional enhancement and working memory encoding in both single-target rapid serial visual presentation task and dual-target rapid serial visual presentation task, which were mainly manifested in delayed and attenuated P3a and diminished P3b of first target. Single-trial analysis indicated that first target and second target will compete with each other for working memory encoding resources in short lag, but not in the long lag. In addition, D1 interfered with the working memory encoding of second target under short lag rather than long lag in the dual-target rapid serial visual presentation task. These results suggested that attentional blink can be attributed to the limited working memory encoding resource, whereas the amount of available resources is subject to modulation by attention. The D1 hinders the attention enhancement of first target, thereby exacerbating attentional blink.


Assuntos
Intermitência na Atenção Visual , Humanos , Estimulação Luminosa/métodos , Eletroencefalografia/métodos , Atenção , Análise Multivariada
7.
J Sci Food Agric ; 104(6): 3788-3797, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38270495

RESUMO

BACKGROUND: Biopolymer-based microgels are being regarded increasingly as promising building blocks in food applications. This study aimed to clarify the evolution process of the network for fat analogue emulsions stabilized by peanut protein isolate (PPI) microgel particles. It also investigated the interfacial structure and characteristics of emulsions (50% oil phase, w/w) stabilized by microgels under different pH conditions. RESULTS: There was an increasing interfacial adsorption capacity for PPI microgels over time (from 85.26% to the maximum of 89.78% at 24 h of storage) due to the aggregation of microgels around droplets and the development of cross-linking microgel chains between adjacent interfaces. The increased ß-sheet content (from 35.51% to 41.12%) of adsorbed microgels indicated unfolding and the enhanced aggregation of microgels, which led to stronger droplet interaction. The network evolution observed with different microscopes clarified the transition to a self-supporting emulsion. The uneven adsorption of large microgel aggregates at the oil-water interface promoted larger and deformed droplets, so more fat-like medium internal phase emulsion stabilized by PPI microgel could be obtained by adjusting the microgel pH to 4.5. The interfacial membranes observed by scanning electron microscopy were thicker and coarser at pH 3.0 and 4.5 than those at pH 7.0 and 9.0. The adsorption of PPI microgel aggregates enhanced the structural strength and improved emulsion stability. CONCLUSION: This work could form a basis for further studies relating physical properties to the design of plant protein-based fat analogues. © 2024 Society of Chemical Industry.


Assuntos
Microgéis , Arachis , Emulsões/química , Proteínas , Géis/química
8.
Compr Rev Food Sci Food Saf ; 23(1): e13284, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284578

RESUMO

Foam, as a structured multi-scale colloidal system, is becoming increasingly popular in food because it gives a series of unique textures, structures, and appearances to foods while maintaining clean labels. Recently, developing green and healthy food-grade foaming agents, improving the stability of edible foams, and exploring the application of foam structures and new foaming agents have been the focus of foam systems. This review comprehensively introduces the destabilization mechanisms of foam and summarizes the main mechanisms controlling the foam stability and progress of different food-grade materials (small-molecular surfactants, biopolymers, and edible Pickering particles). Furthermore, the classic foam systems in food and modern cuisine, their applications, developments, and challenges are also underlined. Natural small-molecular surfactants, novel plant/microalgae proteins, and edible colloidal particles are the research hotspots of high-efficiency food-grade foam stabilizers. They have apparent differences in foam stability mechanisms, and each exerts its advantages. However, the development of foam stabilizers remains to be enriched compared with emulsions. Food foams are diverse and widely used, bringing unique enjoyment and benefit to consumers regarding sense, innovation, and health attributes. In addition to industrial inflatable foods, the foam foods in molecular gastronomy are also worthy of exploration. Moreover, edible foams may have greater potential in structured food design, 3D/4D printing, and controlled flavor release in the future. This review will provide a reference for the efficient development of functional inflatable foods and the advancement of foam technologies in modern cuisine.


Assuntos
Alimento Funcional , Proteínas de Plantas , Emulsões/química , Tensoativos/química
9.
J Youth Adolesc ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977632

RESUMO

Numerous contextual factors have been identified that impact the development of children's prosocial behavior, yet the influence of child-initiated factors on prosocial behavior and its underlying mechanism remains unclear. This study employed three longitudinal models to examine in depth how children's school engagement may promote the development of their own prosocial behavior. Three-wave longitudinal data from 4691 children (M age = 9.480, SD = 0.507; 48.2% female) with 2-year intervals were used. Sequentially, a cross-lagged panel model, a random intercept cross-lagged panel model, and a parallel process latent growth model were constructed. The findings indicated that children's school engagement consistently predicted the future level, dynamic changes at within-person level, and long-term trends in their prosocial behavior, and these longitudinal relationships were partially mediated by parental monitoring. These results reveal a child-parent synergistic mechanism for the development of prosocial behavior, wherein children's school engagement both directly promotes their own prosocial behavior and simultaneously enhances prosocial behavior through eliciting increased parental monitoring.

10.
Langmuir ; 39(26): 8963-8973, 2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37339351

RESUMO

Fat crystals provided the strength of the colloidal network in W/O emulsions and stabilized water droplets. To understand the stabilizing effect of fat-regulated emulsions, W/O emulsions with different edible fats were fabricated. The result indicated that more stable W/O emulsions were produced by palm oil (PO) and palm stearin (PS), whose proportions of fatty acids were similar. Meanwhile, water droplets inhibited the crystallization of emulsified fats but participated in the formation of the colloidal network with fat crystals in emulsions, and the Avrami equation showed a slower crystallization rate of emulsified fats than the corresponding fat blends. However, water droplets participated in the formation of a colloidal network of fat crystals in emulsions, and the adjacent fat crystals were connected through a bridge constructed by water droplets. Fats in the emulsion containing palm stearin crystallized faster and more easily formed the ß-polymorph. The small-angle X-ray scattering (SAXS) data were interpreted by the unified fit model to determine the average size of crystalline nanoplatelets (CNPs). The larger CNPs (>100 nm) with a rough surface of emulsified fats and a uniform distribution of their aggregates was confirmed.

11.
Crit Rev Food Sci Nutr ; : 1-12, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36073738

RESUMO

The actual food system with fat is always complex and fat crystal and fat crystal networks have important effects on the physical properties of food. Recently, power ultrasound (PU) had been widely recognized as an auxiliary technology of fat crystallization to modify food properties. This review expounded on the mechanism of ultrasonic crystallization, and summarized effects of various factors in the process of ultrasonic treatment on fat crystallization. Based on the above, combined with the application of ultrasound in emulsions, the ultrasonic fat crystallization effect in the emulsion system was judged and described. Research results indicated that PU could shorten the induction time of crystallization, accelerate the formation of crystal nuclei, and change the polymorphism of fat crystals. The product treated by PU formed smaller and more uniform crystals to produce a more viscoelastic fat crystal network. In emulsion systems, ultrasonic treatments showed the same effect, but the effect of ultrasonic crystallization on the emulsion stability was different due to fat crystals in different emulsion systems. Meanwhile, the importance of ultrasonic crystallization in lipid emulsions was emphasized, thus ultrasonic crystallization had great potential in emulsion systems.

12.
J Acoust Soc Am ; 146(4): 2385, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31671971

RESUMO

In the process of block compressed sensing (CS) applied to the rolling bearing fault signal, the reconstruction accuracy of the signal is low due to the large difference in sparsity between blocks and the unreasonable components of reconstruction support set, which affects the overall reconstruction effect of the signal. To improve the signal reconstruction results, forward and backward stagewise orthogonal matching pursuit (FBStOMP) based on the adaptive block method is proposed. First, to equalize the sparsity of each block signal, the fault signal is divided into blocks according to the adaptive block length, which is obtained by the short-time autocorrelation algorithm. Then, the K-singular value decomposition algorithm is used to train the sparse dictionary to obtain a better sparse effect. Finally, the FBStOMP algorithm is proposed. The atom backtracking and screening process is added in the reconstruction process to improve the possibility that all the effective atoms can be selected into the support set. The experimental analysis of the simulation signal and bearing fault signal show that, compared with the traditional CS reconstruction algorithm, the adaptive block-FBStOMP algorithm proposed in the paper can effectively improve the reconstruction accuracy of the bearing fault signal.

13.
J Med Syst ; 43(6): 169, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31062175

RESUMO

Mental tasks classification such as motor imagery, based on EEG signals is an important problem in brain computer interface systems (BCI). One of the major concerns in BCI is to have a high classification accuracy. The other concerning one is with the favorable result is guaranteed how to improve the computational efficiency. In this paper, Mu/Beta rhythm was obtained by bandpass filter from EEG signal. And the classical linear discriminant analysis (LDA) was used for deciding which rhythm can give the better classification performance. During this, the common spatial pattern (CSP) was used to project data subject to the ratio of projected energy of one class to that of the other class was maximized. The optimal projection dimension was determined corresponding to the maximum of area under the curve (AUC) for each participant. Eventually, regularized linear discriminant analysis (RLDA) is possible to decode the imagined motor sensed using electroencephalogram (EEG). Results show that higher classification accuracy can be provided by RLDA. And optimal projection dimensions determined by LDA and RLDA are of consistent solution, this improves computational efficiency of CSP-RLDA method without computation of projection dimension.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/classificação , Eletroencefalografia/métodos , Algoritmos , Área Sob a Curva , Encéfalo/fisiologia , Análise Discriminante , Humanos , Movimento
14.
ScientificWorldJournal ; 2014: 149753, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24701138

RESUMO

The isothermal and nonisothermal crystallization kinetics of monoglyceride (MAG) organogels were studied by pulsed nuclear magnetic resonance (pNMR) and differential scanning calorimetry (DSC), respectively. The Avrami equation was used to describe the isothermal crystallization kinetics and experimental data fitted the equation fairly well. Results showed that the crystal growth of MAG organogels was a rod-like growth of instantaneous nuclei at higher degrees of supercooling and a plate-like form with high nucleation rate at lower degrees of supercooling. The exothermic peak in nonisothermal DSC curves for the MAG organogels became wider and shifted to lower temperature when the cooling rate increased, and nonisothermal crystallization was analyzed by Mo equation. Results indicated that at the same crystallization time, to get a higher degree of relative crystallinity, a higher cooling rate was necessary. The activation energy of nonisothermal crystallization was calculated as 739.59 kJ/mol according to the Kissinger method. Therefore, as the results of the isothermal and nonisothermal crystallization kinetics for the MAG organogels obtained, the crystallization rate, crystal nucleation, and growth during the crystallization process could be preliminarily monitored through temperature and cooling rate regulation, which laid the foundation for the real industrial manufacture and application of the MAG organogels.


Assuntos
Géis , Monoglicerídeos/química , Varredura Diferencial de Calorimetria , Cristalização , Cinética
15.
J Colloid Interface Sci ; 674: 663-676, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38950465

RESUMO

HYPOTHESIS: Engineering plant-based microgel particles (MPs) at a molecular scale is meaningful to prepare functional fat analogues. We hypothesize that oat protein isolate (OPI) and κ-carrageenan (CA) have synergy in MPs formation, using MPs with controllable structure, and further to fabricate fat analogues with adjustable characteristics is feasible. Their digestion fate will also be possibly modulated by interfacial coatings. EXPERIMENTS: OPI-based conjugated MPs with tunable rigidities by changing crosslinking densities were designed. The relationship between microgel structures, and emulsion gel properties was explored through spectroscopy, microstructure, rheology and tribology. The delivery to lycopene, as well as inhibiting digestion behaviors of fat analogues was evaluated in a simulated gastro-intestinal tract. FINDINGS: The rigidity of conjugated MPs could be tailored to optimize the performance of fat analogues. OPI-1 %CA MPs could stabilize emulsions up to 95 % oil fraction with fine texture. Tribological behaviors had a dependence on microgel elasticity and interfacial coatings, medium hard MP-stabilized emulsion was less disrupted without coalescence after oral processing. Digestion was delayed by denser and harder MPs by softening the interfacial particle layer or limiting lipase accessibility. Softer conjugated MPs possessed better flexibility and were broken down more easily leading to a higher rate of lipid digestion.

16.
Food Chem ; 452: 139436, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38749144

RESUMO

The oil phase obtained by blending and oleogel methods has potential for the production of non­hydrogenated and low-saturated puff pastry margarine, thereby reducing intakes of both types of dietary fat. The crystal form, microstructure, rheology, and baking applications of puff pastry margarines prepared with anhydrous milk fat (AMF)/palm stearin (POs), POs/palm oil (PO), beef tallow (BT)/PO, or AMF/POs/diacetyl tartaric acid ester of mono(di)glycerides (DATEM) oleogels were investigated using X-ray scattering, polarized light microscope, and rheometer, respectively. All margarines exhibited ß'-form crystal and strongly viscoelastic at low strain. With the addition of DATEM oleogel, their crystal microstructure became more uniform and finer, and the croissants were less hard (1690) and chewiness (160). The chewiness of croissants produced using the margarines was significantly improved with POs content. The theoretical basis for preparation and application in non­hydrogenated and low-saturated puff pastry margarine was provided in the present study.


Assuntos
Margarina , Reologia , Margarina/análise , Viscosidade , Animais , Culinária , Elasticidade , Leite/química , Bovinos , Gorduras/química , Óleo de Palmeira/química , Compostos Orgânicos/química , Compostos Orgânicos/análise
17.
Food Res Int ; 188: 114493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823876

RESUMO

In this paper, two emulsion systems with high and low solid fat contents were prepared from 20 % water phase and 80 % oil phase by adjusting the palm oil/palm stearin/soybean oil ratio. Different ultrasonic power and time were used for the pretreatment of emulsion with different solid fat content, and the application characteristics of ultrasonic in W/O emulsions were explored and evaluated. Directly using high-intensity ultrasound to prepare fatty emulsions would weaken the hardness and storage modulus G' of the samples. Although ultrasound reduced the size of fat crystals in emulsions, the interaction between water droplets and fat crystals needs to be considered. After ultrasonic treatment, water droplets were difficult to immobilize on the crystal surface and thus acted as an active filler to stabilize the emulsion together with the fat crystal network. In high solid fat emulsion systems, an increase in ultrasound power (from 100 W to 200 W) could more affect the crystallization behavior of fats than an increase in ultrasound duration (from 30 s to 60 s), and the distribution of crystals and droplets was more uniform. In the low solid fat emulsion system, the texture of the sample after ultrasonic treatment was softer, and the surface was more delicate and smoother. However, the higher ultrasonic intensity (200 W) was not conducive to the preparation of the spread. Although the ultrasound with excessive intensity promoted the formation of small crystals, it would also lead to the aggregation of small crystals. These small crystals cannot form a uniform crystal network, which increases the fluidity of emulsions.


Assuntos
Cristalização , Emulsões , Óleo de Palmeira , Tamanho da Partícula , Água , Emulsões/química , Água/química , Óleo de Palmeira/química , Óleo de Soja/química , Ondas Ultrassônicas , Ultrassom
18.
Cortex ; 175: 54-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704919

RESUMO

The dorsal attention network (DAN) is a network of brain regions essential for attentional orienting, which includes the lateral intraparietal area (LIP) and frontal eye field (FEF). Recently, the putative human dorsal posterior infero-temporal area (phPITd) has been identified as a new node of the DAN. However, its functional relationship with other areas of the DAN and its specific role in visual attention remained unclear. In this study, we analyzed a large publicly available neuroimaging dataset to investigate the intrinsic functional connectivities (FCs) of the phPITd with other brain areas. The results showed that the intrinsic FCs of the phPITd with the areas of the visual network and the DAN were significantly stronger than those with the ventral attention network (VAN) areas and areas of other networks. We further conducted individual difference analyses with a sample size of 295 participants and a series of attentional tasks to investigate which attentional components each phPITd-based DAN edge predicts. Our findings revealed that the intrinsic FC of the left phPITd with the LIPv could predict individual ability in attentional orienting, but not in alerting, executive control, and distractor suppression. Our results not only provide direct evidence of the phPITd's functional relationship with the LIPv, but also offer a comprehensive understanding of its specific role in visual attention.


Assuntos
Atenção , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Lobo Temporal , Percepção Visual , Humanos , Atenção/fisiologia , Masculino , Feminino , Adulto , Lobo Temporal/fisiologia , Lobo Temporal/diagnóstico por imagem , Adulto Jovem , Imageamento por Ressonância Magnética/métodos , Percepção Visual/fisiologia , Orientação/fisiologia , Lobo Parietal/fisiologia , Lobo Parietal/diagnóstico por imagem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem
19.
Artigo em Inglês | MEDLINE | ID: mdl-39031068

RESUMO

Flexible sensors have attracted great attention in the field of wearable electronic devices due to their deformability, lightness, and versatility. However, property improvement remains a key challenge. Fortunately, natural organisms exhibit many unique response mechanisms to various stimuli, and the corresponding structures and compositions provide advanced design ideas for the development of flexible sensors. Therefore, this Review highlights recent advances in sensing performance and functional characteristics of flexible sensors from the perspective of bionics for the first time. First, the "twins" of bionics and flexible sensors are introduced. Second, the enhancements in electrical and mechanical performance through bionic strategies are summarized according to the prototypes of humans, plants, and animals. Third, the functional characteristics of bionic strategies for flexible sensors are discussed in detail, including self-healing, color-changing, tangential force, strain redistribution, and interfacial resistance. Finally, we summarize the challenges and development trends of bioinspired flexible sensors. This Review aims to deepen the understanding of bionic strategies and provide innovative ideas and references for the design and manufacture of next-generation flexible sensors.

20.
ISA Trans ; 150: 311-321, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38729908

RESUMO

Unsupervised domain adaptation has been extensively researched in rotating-machinery cross-domain fault diagnosis. A multi-source domain adaptive network based on local kernelized higher-order moment matching is constructed in this research for rotating-machinery fault diagnosis. Firstly, a multi-branch network is designed to map each source-target pair to a domain-specific shared space and to extract domain-invariant features using domain adversarial thought. Then, a local kernelized higher-order moment matching algorithm is proposed to perform fine-grained matching in shared category subspace. Finally, a feature fusion strategy based on the local domain distribution deviation is applied to synthesize the output features of multiple classifiers to obtain diagnostic results. The experimental validation of two-branch and three-branch networks on two public datasets is carried out and average diagnostic accuracies both exceed 99%. The results demonstrate the effectiveness and superiority of the approach.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA