RESUMO
Platelet-rich fibrin (PRF) membrane is a three-dimensional biodegradable biopolymer, which consists of platelet derived growth factors enhancing cell adhesion and proliferation. It is widely used in soft and hard tissue regeneration, however, there are unresolved problems with its clinical application. Its preparation needs open handling of the membranes, it degrades easily, and it has a low tensile strength which does not hold a suture blocking wider clinical applications of PRF. Our aim was to produce a sterile, suturable, reproducible PRF membrane suitable for surgical intervention. We compared the biological and mechanical properties of PRF membranes created by the classical glass-tube and those that were created in a single-syringe closed system (hypACT Inject), which allowed aseptic preparation. HypACT Inject device produces a PRF membrane with better handling characteristics without compromising biological properties. Freeze-thawing resulted in significantly higher tensile strength and higher cell adhesion at a lower degradation rate of the membranes. Mesenchymal stem cells seeded onto PRF membranes readily proliferated on the surface of fresh, but even better on freeze/thawed or freeze-dried membranes. These data show that PRF membranes can be made sterile, more uniform and significantly stronger which makes it possible to use them as suturable surgical membranes.
Assuntos
Teste de Materiais , Fibrina Rica em Plaquetas/metabolismo , Seringas , Temperatura , Adulto , Adesão Celular , Proliferação de Células , Células Cultivadas , Fibrinolisina/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Gengiva/citologia , Humanos , Membranas , Células-Tronco Mesenquimais/citologia , Pessoa de Meia-Idade , Resistência à Tração , Adulto JovemRESUMO
This work aims to adopt a simple modulus prediction method for the crystalline poly(ethylene-terephthalate) (PET), which has strong cold-crystallization ability. Based on a single melting curve generated by calorimetry, crystallinity and average melting temperature can easily be evaluated and consequently, tensile modulus can be predicted. Nonetheless, in the case of polymers with cold crystallization behavior, such as PET, the melting process is affected by cold crystallization, impeding the simple calculation of the aforementioned important parameters. In this paper, the techniques to eradicate cold crystallization during calorimetry are presented. Accordingly, the results of a tensile modulus prediction model are presented and discussed. The crystallization and melting characteristics of PET were measured by differential scanning calorimetry (DSC). The mechanical properties of the specimens were estimated by standardized tensile tests. The specimens, which were used for mechanical tests were fabricated using conventional injection molding. The samples were annealed at different temperatures in order to obtain different crystalline structures. The results clearly indicate that the prediction technique is capable to describe the tensile modulus of PET accurately in the case of very diverse crystalline structures.
RESUMO
This study investigates the formic acid-mediated hydrothermal carbonisation (HTC) of microalgae biomass to enhance green hydrogen production. The effects of combined severity factor (CSF) and feedstock-to-suspension ratio (FSR) are examined on HTC gas formation, hydrochar yield and quality, and composition of the liquid phase. The hydrothermal conversion of Chlorella vulgaris was investigated in a CSF and FSR range of -2.529 and 2.943; and 5.0 wt.% - 25.0 wt.%. Artificial neural networks (ANNs) were developed based on experimental data to model and analyse the HTC process. The results show that green hydrogen formation can be increased up to 3.04 mol kg-1 by applying CSF 2.433 and 12.5 wt.% FSR reaction conditions. The developed ANN model (BR-2-11-9-11) describes the hydrothermal process with high testing and training performance (MSEz = 1.71E-06 & 1.40E-06) and accuracy (R2 = 0.9974 & R2 = 0.9781). The enhanced H2 yield indicates an effective alternative green hydrogen production scenario at low temperatures using high-moisture-containing biomass feedstocks.
Assuntos
Chlorella vulgaris , Carbono , Temperatura , Biomassa , Redes Neurais de Computação , HidrogênioRESUMO
Application of nucleating agents is the most versatile and industrially applied way to manipulate the crystalline structure of isotactic polypropylene (iPP). Various materials possess a nucleating effect, but from the viewpoint of dispersibility, the partially soluble ones are the most advantageous. Our objective was to synthesize new N,N'-dicyclohexyldicarboxamide homologues and study their applicability as nucleating agents in iPP. Carbon-13 nuclear magnetic resonance (13C NMR) and infrared spectroscopy were used to prove that the synthesis reactions were successful. Thermal stability of the compounds was investigated with simultaneous thermal analysis. Nucleating efficiency and solubility were characterized by polarized light microscopy and differential scanning calorimetry. Polarized light microscopy was also applied to study the effect of novel additives on the morphology of iPP. The properties, important from the viewpoint of applicability, were also investigated. Tensile tests were performed to characterize the main mechanical properties, and standard haze measurements were performed to characterize optical properties. It can be concluded that the investigated compounds are partially soluble nucleating agents and influence the crystalline structure of iPP. Most of the studied compounds have a moderate nucleating efficiency, but a very interesting dendritic structure develops in their presence. Two of them proved to be non-selective ß-nucleating agents, which result in a remarkable improvement of impact resistance and higher opacity.
RESUMO
A series of high-density polyethylene nanocomposites filled with different diameter sizes (5, 15, and 25 µm) of graphene nanoplatelets at various amounts (0.5-5 wt.%) are prepared by the melt-mixing method. The effect of diameter size and filler content on the mechanical properties is reported, and the results are discussed in terms of morphology and the state of dispersion within the polymer matrix. The measured stiffness and strength of the nanocomposites were found to be mainly influenced by the filler aspect ratio and the filler-matrix adhesion. Fractography was utilized to study the embrittleness of the nanocomposites, and the observations revealed that a ductile to brittle transition is caused by a micro-deformation mechanism change in the nanocomposites. Several micromechanical models for the prediction of mechanical properties of nanocomposites, taking into consideration filler aspect ratio, percolation effect, and interphase regions, are considered. The three-phase model proposed by Ji accurately predicts the stiffness of graphene nanoplatelets with a higher diameter size, while Takayanagi modified model II was found to show good agreement with the experimental results of smaller ones at low filler content. This study demonstrates that the diameter size of the filler plays a central role in determining the mechanical properties.
RESUMO
Compounds containing redox active permanganate anions and complexed silver cations with reducing pyridine ligands are used not only as selective and mild oxidants in organic chemistry but as precursors for nanocatalyst synthesis in low-temperature solid-phase quasi-intramolecular redox reactions. Here we show a novel compound (4Agpy2MnO4·Agpy4MnO4) that has unique structural features including (1) four coordinated and one non-coordinated permanganate anion, (2) κ1O-permanganate coordinated Ag, (3) chain-like [Ag(py)2]+ units, (4) non-coordinated ionic permanganate ions and an [Ag(py)4]+ tetrahedra as well as (5) unsymmetrical hydrogen bonds between pyridine α-CHs and a permanganate oxygen. As a result of the oxidizing permanganate anion and reducing pyridine ligand, a highly exothermic reaction occurs at 85 °C. If the decomposition heat is absorbed by alumina or oxidation-resistant organic solvents (the solvent absorbs the heat to evaporate), the decomposition reaction proceeds smoothly and safely. During heating of the solid material, pyridine is partly oxidized into carbon dioxide and water; the solid phase decomposition end product contains mainly metallic Ag, Mn3O4 and some encapsulated carbon dioxide. Surprisingly, the enigmatic carbon-dioxide is an intercalated gas instead of the expected chemisorbed carbonate form. The title compound is proved to be a mild and efficient oxidant toward benzyl alcohols with an almost quantitative yield of benzaldehydes.
RESUMO
Thermochemical studies of hydroxycinnamic acid derivatives and their surface complexes are important for the pharmaceutical industry, medicine and for the development of technologies of heterogeneous biomass pyrolysis. In this study, structural and thermal transformations of caffeic acid complexes on silica surfaces were studied by UV-Vis spectroscopy, thermogravimetric analysis, temperature programmed desorption mass spectrometry (TPD MS) and quantum chemical methods. Two types of caffeic acid surface complexes are found to form through phenolic or carboxyl groups. The kinetic parameters of the chemical reactions of caffeic acid on silica surface are calculated. The mechanisms of thermal transformations of the caffeic chemisorbed surface complexes are proposed. Thermal decomposition of caffeic acid complex chemisorbed through grafted ester group proceeds via three parallel reactions, producing ketene, vinyl and acetylene derivatives of 1,2-dihydroxybenzene. Immobilization of phenolic acids on the silica surface improves greatly their thermal stability.
Assuntos
Ácidos Cafeicos/química , Teoria Quântica , Dióxido de Silício/química , Temperatura , Espectrometria de Massas , Estrutura Molecular , Tamanho da Partícula , Espectrofotometria Ultravioleta , Propriedades de Superfície , TermogravimetriaRESUMO
Two soluble nucleating agents were used to modify the optical properties of nine PP homo- and random copolymers. The ethylene content of the polymers changed between 0 and 5.3 wt %. Chain regularity was characterized by the stepwise isothermal segregation technique (SIST), while optical properties by the measurement of the haze of injection molded samples. Crystallization and melting characteristics were determined by differential scanning calorimetry (DSC). The analysis of the results proved that lamella thickness and change in crystallinity influence haze only slightly. A model was introduced which describes quantitatively the dependence of nucleation efficiency and haze on the concentration of the nucleating agent. The model assumes that the same factors influence the peak temperature of crystallization and optical properties. The analysis of the results proved that the assumption is valid under the same crystallization conditions. The parameters of the model depend on the molecular architecture of the polymer. Chain regularity determines supermolecular structure and thus the dependence of optical properties on nucleation.