RESUMO
Forest models are instrumental for understanding and projecting the impact of climate change on forests. A considerable number of forest models have been developed in the last decades. However, few systematic and comprehensive model comparisons have been performed in Europe that combine an evaluation of modelled carbon and water fluxes and forest structure. We evaluate 13 widely used, state-of-the-art, stand-scale forest models against field measurements of forest structure and eddy-covariance data of carbon and water fluxes over multiple decades across an environmental gradient at nine typical European forest stands. We test the models' performance in three dimensions: accuracy of local predictions (agreement of modelled and observed annual data), realism of environmental responses (agreement of modelled and observed responses of daily gross primary productivity to temperature, radiation and vapour pressure deficit) and general applicability (proportion of European tree species covered). We find that multiple models are available that excel according to our three dimensions of model performance. For the accuracy of local predictions, variables related to forest structure have lower random and systematic errors than annual carbon and water flux variables. Moreover, the multi-model ensemble mean provided overall more realistic daily productivity responses to environmental drivers across all sites than any single individual model. The general applicability of the models is high, as almost all models are currently able to cover Europe's common tree species. We show that forest models complement each other in their response to environmental drivers and that there are several cases in which individual models outperform the model ensemble. Our framework provides a first step to capturing essential differences between forest models that go beyond the most commonly used accuracy of predictions. Overall, this study provides a point of reference for future model work aimed at predicting climate impacts and supporting climate mitigation and adaptation measures in forests.
Assuntos
Ciclo do Carbono , Mudança Climática , Carbono , Temperatura , ÁguaRESUMO
Ongoing climate change is expected to shift tree species distribution and therefore affect forest biodiversity and ecosystem services. To assess and project tree distributional shifts, researchers may compare the distribution of juvenile and adult trees under the assumption that differences between tree life stages reflect distributional shifts triggered by climate change. However, the distribution of tree life stages could differ within the lifespan of trees, therefore, we hypothesize that currently observed distributional differences could represent shifts over ontogeny as opposed to climatically driven changes. Here, we test this hypothesis with data from 1435 plots resurveyed after more than three decades across the Western Carpathians. We compared seedling, sapling and adult distribution of 12 tree species along elevation, temperature and precipitation gradients. We analyzed (i) temporal shifts between the surveys and (ii) distributional differences between tree life stages within both surveys. Despite climate warming, tree species distribution of any life stage did not shift directionally upward along elevation between the surveys. Temporal elevational shifts were species specific and an order of magnitude lower than differences among tree life stages within the surveys. Our results show that the observed range shifts among tree life stages are more consistent with ontogenetic differences in the species' environmental requirements than with responses to recent climate change. The distribution of seedlings substantially differed from saplings and adults, while the distribution of saplings did not differ from adults, indicating a critical transition between seedling and sapling tree life stages. Future research has to take ontogenetic differences among life stages into account as we found that distributional differences recently observed worldwide may not reflect climate change but rather the different environmental requirements of tree life stages.
Assuntos
Mudança Climática , Florestas , Dispersão Vegetal , Árvores/fisiologia , Altitude , Eslováquia , Especificidade da Espécie , Fatores de Tempo , Árvores/crescimento & desenvolvimentoRESUMO
Efforts to estimate the impact of climate change-induced forest expansion on soil carbon stocks in cold regions are hindered by the lack of soil organic carbon (SOC) concentration data. The presented study addressed the information gap by establishing SOC concentration and its variability in two catchments inside the vast, remote, and rugged Putorana Plateau. Additionally, it explored interrelationships among the terrain relief, vegetation cover, surface organic layer, SOC and its mineral association on the northernmost boundary of the forest-tundra biome traversing the northwestern part of the Central Siberian Tableland. Soil samples were taken from the active layer on the slope base, middle, and below the upper forest boundary. Subsequently, they were analyzed for SOC concentration by dry combustion. Multiple linear regression identified associations between slope angle and surface organic layer thickness and between SOC concentration and surface organic layer thickness, clay content, and dithionite-extracted Al. Clay content and surface organic layer thickness explained 68% of the overall SOC concentration variability. When used with data produced by remote sensing-based multipurpose large-scale mapping of selected biophysical factors, the acquired regression equations could aid the estimation of SOC across the rugged terrain of the Siberian Traps.
Assuntos
Carbono , Solo , Argila , Ditionita , Florestas , Minerais , TundraRESUMO
Deadwood is an important component of forests that fulfils many ecosystem functions. The occurrence, amount and spatial distribution of deadwood in forest ecosystems depend on tree species composition, historical development and past management. In this presented study, we assessed the total amount of deadwood, including fine and coarse woody debris at five areas of predominantly broadleaved forests within the University Forest Enterprise of the Technical University in Zvolen, Slovakia that had been disturbed by windstorm Zofia in 2014. Windthrown wood was salvaged between May 2014 and October 2015. In the year 2018, we performed an inventory of deadwood that remained on-site after salvage logging. The mean volume of deadwood recorded at sample plots fluctuated between 35.96 m3/ha and 176.06 m3/ha and mean deadwood coverage values at individual disturbed areas ranged from 7.27 to 17.91%. In the work, we derived several models for the estimation of deadwood volume based on deadwood coverage and/or diameter, which showed that these characteristics are good proxies of deadwood volume. The tests, involving close-range photogrammetry methods for deadwood quantification, revealed that the number of pieces and the coverage of deadwood recorded in photos was significantly lower than the values derived from field measurements.
RESUMO
(1) Background: Boreal forests influence global carbon balance and fulfil multiple ecosystem services. Their vegetation growth and biomass are significantly affected by environmental conditions. In the present study we focused on one of the least accessible and least studied parts of the boreal region situated in the western part of Putorana plateau, Central Siberia (Lama and Keta lakes, Krasnoyarsk region), northern Russia. (2) Methods: We derived local height-diameter and crown radius-height models for six tree species. We used univariate correlation and multiple regression analyses to examine the relationships between tree biomass and environmental conditions. (3) Results: Total tree biomass stock (aboveground tree biomass + aboveground and buried deadwood) varied between 6.47 t/ha and 149 t/ha, while total deadwood biomass fluctuated from 0.06 to 21.45 t/ha. At Lama, biomass production decreased with elevation. At Keta, the relationship of biomass to elevation followed a U shape. Stand biomass changed with micro-terrain morphology and soil nutrient content, while the patterns were location-specific. (4) Conclusions: The majority of the derived models were significant and explained most of the variability in the relationships between tree diameter or crown radius and tree height. Micro-site environmental conditions had a substantial effect on tree biomass in the studied locations.
RESUMO
The article analyses the possibilities of developing an integrated indicator and a model of the assessment of forests naturalness using the data from the database of mountainous spruce forests situated in the Western Carpathians of Slovakia. The article presents two variants of such a model, one based on discriminant analysis, while the second one using an additive approach. The analysis of the data from mountainous spruce forests revealed significant indicators of forest naturalness degree: the arithmetic mean of the ratio between crown length and tree height, the deadwood volume, the coverage of grasses, the coverage of mosses and lichens, and the aggregation index. In addition, the coefficient of variation of tree diameters was included in the final model, since its presence in the model had a positive influence on the correctness of the classification of the forest naturalness degree. The correctness of the classification of the proposed discriminant model was 74.5%. For the additive model, the ranges of the values of the integrated indicator were defined for every degree of forest naturalness by taking into account the error ranges of the arithmetic mean values and the percentiles of the values in individual degrees of forest naturalness. The overall correctness of the classification with the additive model was 63.4%. In the second step, the scheme how to apply the classification model of the forest naturalness degree in the decision-making process of designating as a forest protected areas was proposed. In this scheme, the degree of forest naturalness is considered as a basic criterion for the determination of nature-conservation value of forest ecosystems. As further decision-making criteria we identified the possibility to restore, or the possibility to improve the naturalness of less natural forest ecosystems, which are designated as protected; the occurrence of the endangered species; and the occurrence of other natural values.
Assuntos
Conservação dos Recursos Naturais/métodos , Técnicas de Apoio para a Decisão , Agricultura Florestal/métodos , Biodiversidade , Ecossistema , Modelos Biológicos , Árvores , Meio SelvagemRESUMO
Annual trunk increments are essential for short-term analyses of the response of trees to various factors. For instance, based on annual trunk increments, it is possible to develop and calibrate forest growth models. We investigated the possibility of estimating annual trunk increments from the terrestrial structure from motion (SfM) photogrammetry. Obtaining the annual trunk increments of mature trees is challenging due to the relatively small growth of trunks within one year. In our experiment, annual trunk increments were obtained by two conventional methods: measuring tape (perimeter increment) at heights of 0.8, 1.3, and 1.8 m on the trunk and increment borer (diameter increment) at a height of 1.3 m on the trunk. The following tree species were investigated: Fagus sylvatica L. (beech), Quercus petraea (Matt.) Liebl. (oak), Picea abies (L.) H. Karst (spruce), and Abies alba Mill (fir). The annual trunk increments ranged from 0.9 cm to 2.4 cm (tape/perimeter) and from 0.7 mm to 3.1 mm (borer/diameter). The data were collected before- and after-vegetation season, besides the data collection increment borer. When the estimated perimeters from the terrestrial SfM photogrammetry were compared to those obtained using the measuring tape, the root mean square error (RMSE) was 0.25-1.33 cm. The relative RMSE did not exceed 1% for all tree species. No statistically significant differences were found between the annual trunk increments obtained using the measuring tape and terrestrial SfM photogrammetry for beech, spruce, and fir. Only in the case of oak, the difference was statistically significant. Furthermore, the correlation coefficient between the annual trunk increments collected using the increment borer and those derived from terrestrial SfM photogrammetry was positive and equal to 0.6501. Terrestrial SfM photogrammetry is a hardware low-demanding technique that provides accurate three-dimensional data that can, based on our results, even detect small temporal tree trunk changes.
Assuntos
Monitoramento Ambiental/métodos , Fotogrametria , Árvores/crescimento & desenvolvimentoRESUMO
Carbon allocation plays a key role in ecosystem dynamics and plant adaptation to changing environmental conditions. Hence, proper description of this process in vegetation models is crucial for the simulations of the impact of climate change on carbon cycling in forests. Here we review how carbon allocation modelling is currently implemented in 31 contrasting models to identify the main gaps compared with our theoretical and empirical understanding of carbon allocation. A hybrid approach based on combining several principles and/or types of carbon allocation modelling prevailed in the examined models, while physiologically more sophisticated approaches were used less often than empirical ones. The analysis revealed that, although the number of carbon allocation studies over the past 10 years has substantially increased, some background processes are still insufficiently understood and some issues in models are frequently poorly represented, oversimplified or even omitted. Hence, current challenges for carbon allocation modelling in forest ecosystems are (i) to overcome remaining limits in process understanding, particularly regarding the impact of disturbances on carbon allocation, accumulation and utilization of nonstructural carbohydrates, and carbon use by symbionts, and (ii) to implement existing knowledge of carbon allocation into defence, regeneration and improved resource uptake in order to better account for changing environmental conditions.
Assuntos
Mudança Climática , Ecossistema , Carbono , Ciclo do Carbono , FlorestasRESUMO
Models are pivotal for assessing future forest dynamics under the impacts of changing climate and management practices, incorporating representations of tree growth, mortality, and regeneration. Quantitative studies on the importance of mortality submodels are scarce. We evaluated 15 dynamic vegetation models (DVMs) regarding their sensitivity to different formulations of tree mortality under different degrees of climate change. The set of models comprised eight DVMs at the stand scale, three at the landscape scale, and four typically applied at the continental to global scale. Some incorporate empirically derived mortality models, and others are based on experimental data, whereas still others are based on theoretical reasoning. Each DVM was run with at least two alternative mortality submodels. Model behavior was evaluated against empirical time series data, and then, the models were subjected to different scenarios of climate change. Most DVMs matched empirical data quite well, irrespective of the mortality submodel that was used. However, mortality submodels that performed in a very similar manner against past data often led to sharply different trajectories of forest dynamics under future climate change. Most DVMs featured high sensitivity to the mortality submodel, with deviations of basal area and stem numbers on the order of 10-40% per century under current climate and 20-170% under climate change. The sensitivity of a given DVM to scenarios of climate change, however, was typically lower by a factor of two to three. We conclude that (1) mortality is one of the most uncertain processes when it comes to assessing forest response to climate change, and (2) more data and a better process understanding of tree mortality are needed to improve the robustness of simulated future forest dynamics. Our study highlights that comparing several alternative mortality formulations in DVMs provides valuable insights into the effects of process uncertainties on simulated future forest dynamics.
RESUMO
We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.