Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(2): e1011825, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38306399

RESUMO

Gastruloids have emerged as highly useful in vitro models of mammalian gastrulation. One of the most striking features of 3D gastruloids is their elongation, which mimics the extension of the embryonic anterior-posterior axis. Although axis extension is crucial for development, the underlying mechanism has not been fully elucidated in mammalian species. Gastruloids provide an opportunity to study this morphogenic process in vitro. Here, we measure and quantify the shapes of elongating gastruloids and show, by Cellular Potts model simulations based on a novel, optimized algorithm, that convergent extension, driven by a combination of active cell crawling and differential adhesion can explain the observed shapes. We reveal that differential adhesion alone is insufficient and also directly observe hallmarks of convergent extension by time-lapse imaging of gastruloids. Finally, we show that gastruloid elongation can be abrogated by inhibition of the Rho kinase pathway, which is involved in convergent extension in vivo. All in all, our study demonstrates, how gastruloids can be used to elucidate morphogenic processes in embryonic development.


Assuntos
Gástrula , Gastrulação , Animais , Gástrula/metabolismo , Morfogênese , Desenvolvimento Embrionário , Mamíferos
2.
Mol Syst Biol ; 19(3): e11353, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36727665

RESUMO

Division of labor can evolve when social groups benefit from the functional specialization of its members. Recently, a novel means of coordinating the division of labor was found in the antibiotic-producing bacterium Streptomyces coelicolor, where specialized cells are generated through large-scale genomic re-organization. We investigate how the evolution of a genome architecture enables such mutation-driven division of labor, using a multiscale computational model of bacterial evolution. In this model, bacterial behavior-antibiotic production or replication-is determined by the structure and composition of their genome, which encodes antibiotics, growth-promoting genes, and fragile genomic loci that can induce chromosomal deletions. We find that a genomic organization evolves, which partitions growth-promoting genes and antibiotic-coding genes into distinct parts of the genome, separated by fragile genomic loci. Mutations caused by these fragile sites mostly delete growth-promoting genes, generating sterile, and antibiotic-producing mutants from weakly-producing progenitors, in agreement with experimental observations. This division of labor enhances the competition between colonies by promoting antibiotic diversity. These results show that genomic organization can co-evolve with genomic instabilities to enable reproductive division of labor.


Assuntos
Genoma , Genômica , Mutação , Antibacterianos
3.
PLoS Comput Biol ; 19(1): e1010169, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668673

RESUMO

All tissue development and replenishment relies upon the breaking of symmetries leading to the morphological and operational differentiation of progenitor cells into more specialized cells. One of the main engines driving this process is the Notch signal transduction pathway, a ubiquitous signalling system found in the vast majority of metazoan cell types characterized to date. Broadly speaking, Notch receptor activity is governed by a balance between two processes: 1) intercellular Notch transactivation triggered via interactions between receptors and ligands expressed in neighbouring cells; 2) intracellular cis inhibition caused by ligands binding to receptors within the same cell. Additionally, recent reports have also unveiled evidence of cis activation. Whilst context-dependent Notch receptor clustering has been hypothesized, to date, Notch signalling has been assumed to involve an interplay between receptor and ligand monomers. In this study, we demonstrate biochemically, through a mutational analysis of DLL4, both in vitro and in tissue culture cells, that Notch ligands can efficiently self-associate. We found that the membrane proximal EGF-like repeat of DLL4 was necessary and sufficient to promote oligomerization/dimerization. Mechanistically, our experimental evidence supports the view that DLL4 ligand dimerization is specifically required for cis-inhibition of Notch receptor activity. To further substantiate these findings, we have adapted and extended existing ordinary differential equation-based models of Notch signalling to take account of the ligand dimerization-dependent cis-inhibition reported here. Our new model faithfully recapitulates our experimental data and improves predictions based upon published data. Collectively, our work favours a model in which net output following Notch receptor/ligand binding results from ligand monomer-driven Notch receptor transactivation (and cis activation) counterposed by ligand dimer-mediated cis-inhibition.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Receptores Notch , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Ligantes , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Multimerização Proteica
4.
Biophys J ; 122(13): 2609-2622, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37183398

RESUMO

The mechanical interaction between cells and the extracellular matrix (ECM) is fundamental to coordinate collective cell behavior in tissues. Relating individual cell-level mechanics to tissue-scale collective behavior is a challenge that cell-based models such as the cellular Potts model (CPM) are well-positioned to address. These models generally represent the ECM with mean-field approaches, which assume substrate homogeneity. This assumption breaks down with fibrous ECM, which has nontrivial structure and mechanics. Here, we extend the CPM with a bead-spring model of ECM fiber networks modeled using molecular dynamics. We model a contractile cell pulling with discrete focal adhesion-like sites on the fiber network and demonstrate agreement with experimental spatiotemporal fiber densification and displacement. We show that at high network cross-linking, contractile cell forces propagate over at least eight cell diameters, decaying with distance with power law exponent n= 0.35 - 0.65 typical of viscoelastic ECMs. Further, we use in silico atomic force microscopy to measure local cell-induced network stiffening consistent with experiments. Our model lays the foundation for investigating how local and long-ranged cell-ECM mechanobiology contributes to multicellular morphogenesis.


Assuntos
Matriz Extracelular , Adesões Focais , Matriz Extracelular/química , Simulação de Dinâmica Molecular , Microscopia de Força Atômica , Modelos Biológicos
5.
Biophys J ; 122(13): 2791-2807, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37291829

RESUMO

In vivo, cells navigate through complex environments filled with obstacles such as other cells and the extracellular matrix. Recently, the term "topotaxis" has been introduced for navigation along topographic cues such as obstacle density gradients. Experimental and mathematical efforts have analyzed topotaxis of single cells in pillared grids with pillar density gradients. A previous model based on active Brownian particles (ABPs) has shown that ABPs perform topotaxis, i.e., drift toward lower pillar densities, due to decreased effective persistence lengths at high pillar densities. The ABP model predicted topotactic drifts of up to 1% of the instantaneous speed, whereas drifts of up to 5% have been observed experimentally. We hypothesized that the discrepancy between the ABP and the experimental observations could be in 1) cell deformability and 2) more complex cell-pillar interactions. Here, we introduce a more detailed model of topotaxis based on the cellular Potts model (CPM). To model persistent cells we use the Act model, which mimics actin-polymerization-driven motility, and a hybrid CPM-ABP model. Model parameters were fitted to simulate the experimentally found motion of Dictyostelium discoideum on a flat surface. For starved D. discoideum, the topotactic drifts predicted by both CPM variants are closer to the experimental results than the previous ABP model due to a larger decrease in persistence length. Furthermore, the Act model outperformed the hybrid model in terms of topotactic efficiency, as it shows a larger reduction in effective persistence time in dense pillar grids. Also pillar adhesion can slow down cells and decrease topotaxis. For slow and less-persistent vegetative D. discoideum cells, both CPMs predicted a similar small topotactic drift. We conclude that deformable cell volume results in higher topotactic drift compared with ABPs, and that feedback of cell-pillar collisions on cell persistence increases drift only in highly persistent cells.


Assuntos
Dictyostelium , Matriz Extracelular , Movimento (Física)
6.
PLoS Comput Biol ; 18(2): e1009156, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35157694

RESUMO

Lymphocytes have been described to perform different motility patterns such as Brownian random walks, persistent random walks, and Lévy walks. Depending on the conditions, such as confinement or the distribution of target cells, either Brownian or Lévy walks lead to more efficient interaction with the targets. The diversity of these motility patterns may be explained by an adaptive response to the surrounding extracellular matrix (ECM). Indeed, depending on the ECM composition, lymphocytes either display a floating motility without attaching to the ECM, or sliding and stepping motility with respectively continuous or discontinuous attachment to the ECM, or pivoting behaviour with sustained attachment to the ECM. Moreover, on the long term, lymphocytes either perform a persistent random walk or a Brownian-like movement depending on the ECM composition. How the ECM affects cell motility is still incompletely understood. Here, we integrate essential mechanistic details of the lymphocyte-matrix adhesions and lymphocyte intrinsic cytoskeletal induced cell propulsion into a Cellular Potts model (CPM). We show that the combination of de novo cell-matrix adhesion formation, adhesion growth and shrinkage, adhesion rupture, and feedback of adhesions onto cell propulsion recapitulates multiple lymphocyte behaviours, for different lymphocyte subsets and various substrates. With an increasing attachment area and increased adhesion strength, the cells' speed and persistence decreases. Additionally, the model predicts random walks with short-term persistent but long-term subdiffusive properties resulting in a pivoting type of motility. For small adhesion areas, the spatial distribution of adhesions emerges as a key factor influencing cell motility. Small adhesions at the front allow for more persistent motility than larger clusters at the back, despite a similar total adhesion area. In conclusion, we present an integrated framework to simulate the effects of ECM proteins on cell-matrix adhesion dynamics. The model reveals a sufficient set of principles explaining the plasticity of lymphocyte motility.


Assuntos
Junções Célula-Matriz , Matriz Extracelular , Adesão Celular/fisiologia , Movimento Celular/fisiologia , Junções Célula-Matriz/fisiologia , Simulação por Computador , Matriz Extracelular/metabolismo
7.
J Math Biol ; 85(4): 41, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163567

RESUMO

We analyze an 'up-the-gradient' model for the formation of transport channels of the phytohormone auxin, through auxin-mediated polarization of the PIN1 auxin transporter. We show that this model admits a family of travelling wave solutions that is parameterized by the height of the auxin-pulse. We uncover scaling relations for the speed and width of these waves and verify these rigorous results with numerical computations. In addition, we provide explicit expressions for the leading-order wave profiles, which allows the influence of the biological parameters in the problem to be readily identified. Our proofs are based on a generalization of the scaling principle developed by Friesecke and Pego to construct pulse solutions to the classic Fermi-Pasta-Ulam-Tsingou model, which describes a one-dimensional chain of coupled nonlinear springs.


Assuntos
Ácidos Indolacéticos , Reguladores de Crescimento de Plantas , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras , Reguladores de Crescimento de Plantas/metabolismo
8.
Soft Matter ; 16(3): 764-774, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31830190

RESUMO

Recent experiments on monolayers of spindle-like cells plated on adhesive stripe-shaped domains have provided a convincing demonstration that certain types of collective phenomena in epithelia are well described by active nematic hydrodynamics. While recovering some of the hallmark predictions of this framework, however, these experiments have also revealed a number of unexpected features that could be ascribed to the existence of chirality over length scales larger than the typical size of a cell. In this article we elaborate on the microscopic origin of chiral stresses in nematic cell monolayers and investigate how chirality affects the motion of topological defects, as well as the collective motion in stripe-shaped domains. We find that chirality introduces a characteristic asymmetry in the collective cellular flow, from which the ratio between chiral and non-chiral active stresses can be inferred by particle-image-velocimetry measurements. Furthermore, we find that chirality changes the nature of the spontaneous flow transition under confinement and that, for specific anchoring conditions, the latter has the structure of an imperfect pitchfork bifurcation.


Assuntos
Fenômenos Fisiológicos Celulares/fisiologia , Cristais Líquidos/química , Modelos Biológicos , Adesão Celular , Comunicação Celular , Linhagem Celular , Movimento Celular , Forma Celular , Hidrodinâmica , Modelos Teóricos , Estereoisomerismo
9.
Soft Matter ; 16(27): 6328-6343, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32490503

RESUMO

We investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work, computer simulations and in vitro experiments, we demonstrate that the orientation of the stress fibers strongly influences the geometry of the cell edge. In the presence of a uniformly aligned cytoskeleton, the cell edge can be well approximated by elliptical arcs, whose eccentricity reflects the degree of anisotropy of the cell's internal stresses. Upon modeling the actin cytoskeleton as a nematic liquid crystal, we further show that the geometry of the cell edge feeds back on the organization of the stress fibers by altering the length scale at which these are confined. This feedback mechanism is controlled by a dimensionless number, the anchoring number, representing the relative weight of surface-anchoring and bulk-aligning torques. Our model allows to predict both cellular shape and the internal structure of the actin cytoskeleton and is in good quantitative agreement with experiments on fibroblastoid (GDß1, GDß3) and epithelioid (GEß1, GEß3) cells.


Assuntos
Citoesqueleto de Actina , Citoesqueleto , Actinas , Animais , Anisotropia , Forma Celular , Microtúbulos
10.
PLoS Comput Biol ; 14(7): e1006239, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29979675

RESUMO

In experimental assays of angiogenesis in three-dimensional fibrin matrices, a temporary scaffold formed during wound healing, the type and composition of fibrin impacts the level of sprouting. More sprouts form on high molecular weight (HMW) than on low molecular weight (LMW) fibrin. It is unclear what mechanisms regulate the number and the positions of the vascular-like structures in cell cultures. To address this question, we propose a mechanistic simulation model of endothelial cell migration and fibrin proteolysis by the plasmin system. The model is a hybrid, cell-based and continuum, computational model based on the cellular Potts model and sets of partial-differential equations. Based on the model results, we propose that a positive feedback mechanism between uPAR, plasmin and transforming growth factor ß1 (TGFß1) selects cells in the monolayer for matrix invasion. Invading cells releases TGFß1 from the extracellular matrix through plasmin-mediated fibrin degradation. The activated TGFß1 further stimulates fibrin degradation and keeps proteolysis active as the sprout invades the fibrin matrix. The binding capacity for TGFß1 of LMW is reduced relative to that of HMW. This leads to reduced activation of proteolysis and, consequently, reduced cell ingrowth in LMW fibrin compared to HMW fibrin. Thus our model predicts that endothelial cells in LMW fibrin matrices compared to HMW matrices show reduced sprouting due to a lower bio-availability of TGFß1.


Assuntos
Simulação por Computador , Fibrinogênio/metabolismo , Fibrinolisina/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Disponibilidade Biológica , Movimento Celular , Células Cultivadas , Células Endoteliais/citologia , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Fibrina/química , Fibrina/metabolismo , Fibrinólise , Humanos , Técnicas In Vitro , Peso Molecular , Proteólise , Reprodutibilidade dos Testes
11.
Bull Math Biol ; 81(8): 3322-3341, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30927191

RESUMO

Cell-based, mathematical modeling of collective cell behavior has become a prominent tool in developmental biology. Cell-based models represent individual cells as single particles or as sets of interconnected particles and predict the collective cell behavior that follows from a set of interaction rules. In particular, vertex-based models are a popular tool for studying the mechanics of confluent, epithelial cell layers. They represent the junctions between three (or sometimes more) cells in confluent tissues as point particles, connected using structural elements that represent the cell boundaries. A disadvantage of these models is that cell-cell interfaces are represented as straight lines. This is a suitable simplification for epithelial tissues, where the interfaces are typically under tension, but this simplification may not be appropriate for mesenchymal tissues or tissues that are under compression, such that the cell-cell boundaries can buckle. In this paper, we introduce a variant of VMs in which this and two other limitations of VMs have been resolved. The new model can also be seen as on off-the-lattice generalization of the Cellular Potts Model. It is an extension of the open-source package VirtualLeaf, which was initially developed to simulate plant tissue morphogenesis where cells do not move relative to one another. The present extension of VirtualLeaf introduces a new rule for cell-cell shear or sliding, from which cell rearrangement (T1) and cell extrusion (T2) transitions emerge naturally, allowing the application of VirtualLeaf to problems of animal development. We show that the updated VirtualLeaf yields different results than the traditional vertex-based models for differential adhesion-driven cell sorting and for the neighborhood topology of soft cellular networks.


Assuntos
Modelos Biológicos , Morfogênese , Animais , Fenômenos Biomecânicos , Adesão Celular , Comunicação Celular , Movimento Celular , Simulação por Computador , Biologia do Desenvolvimento , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Epitélio/crescimento & desenvolvimento , Conceitos Matemáticos , Método de Monte Carlo , Desenvolvimento Vegetal , Software
12.
Phys Rev Lett ; 121(17): 178101, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30411958

RESUMO

We investigate the geometrical and mechanical properties of adherent cells characterized by a highly anisotropic actin cytoskeleton. Using a combination of theoretical work and experiments on micropillar arrays, we demonstrate that the shape of the cell edge is accurately described by elliptical arcs, whose eccentricity expresses the degree of anisotropy of the internal cell stresses. This results in a spatially varying tension along the cell edge, that significantly affects the traction forces exerted by the cell on the substrate. Our work highlights the strong interplay between cell mechanics and geometry and paves the way towards the reconstruction of cellular forces from geometrical data.


Assuntos
Forma Celular , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Anisotropia , Fenômenos Biomecânicos , Adesão Celular , Modelos Biológicos
13.
PLoS Comput Biol ; 13(7): e1005635, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715420

RESUMO

Cancer is a disease of cellular regulation, often initiated by genetic mutation within cells, and leading to a heterogeneous cell population within tissues. In the competition for nutrients and growth space within the tumors the phenotype of each cell determines its success. Selection in this process is imposed by both the microenvironment (neighboring cells, extracellular matrix, and diffusing substances), and the whole of the organism through for example the blood supply. In this view, the development of tumor cells is in close interaction with their increasingly changing environment: the more cells can change, the more their environment will change. Furthermore, instabilities are also introduced on the organism level: blood supply can be blocked by increased tissue pressure or the tortuosity of the tumor-neovascular vessels. This coupling between cell, microenvironment, and organism results in behavior that is hard to predict. Here we introduce a cell-based computational model to study the effect of blood flow obstruction on the micro-evolution of cells within a cancerous tissue. We demonstrate that stages of tumor development emerge naturally, without the need for sequential mutation of specific genes. Secondly, we show that instabilities in blood supply can impact the overall development of tumors and lead to the extinction of the dominant aggressive phenotype, showing a clear distinction between the fitness at the cell level and survival of the population. This provides new insights into potential side effects of recent tumor vasculature normalization approaches.


Assuntos
Modelos Biológicos , Neoplasias/fisiopatologia , Neovascularização Patológica/fisiopatologia , Microambiente Tumoral/fisiologia , Animais , Biologia Computacional , Simulação por Computador , Humanos , Camundongos , Mutação
14.
Biophys J ; 112(4): 755-766, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28256235

RESUMO

During animal development and homeostasis, the structure of tissues, including muscles, blood vessels, and connective tissues, adapts to mechanical strains in the extracellular matrix (ECM). These strains originate from the differential growth of tissues or forces due to muscle contraction or gravity. Here we show using a computational model that by amplifying local strain cues, active cell contractility can facilitate and accelerate the reorientation of single cells to static strains. At the collective cell level, the model simulations show that active cell contractility can facilitate the formation of strings along the orientation of stretch. The computational model is based on a hybrid cellular Potts and finite-element simulation framework describing a mechanical cell-substrate feedback, where: 1) cells apply forces on the ECM, such that 2) local strains are generated in the ECM and 3) cells preferentially extend protrusions along the strain orientation. In accordance with experimental observations, simulated cells align and form stringlike structures parallel to static uniaxial stretch. Our model simulations predict that the magnitude of the uniaxial stretch and the strength of the contractile forces regulate a gradual transition between stringlike patterns and vascular networklike patterns. Our simulations also suggest that at high population densities, less cell cohesion promotes string formation.


Assuntos
Matriz Extracelular/metabolismo , Fenômenos Mecânicos , Modelos Biológicos , Fenômenos Biomecânicos , Adesão Celular , Estresse Mecânico
15.
Dev Growth Differ ; 59(5): 329-339, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28593653

RESUMO

Mathematical modeling is an essential approach for the understanding of complex multicellular behaviors in tissue morphogenesis. Here, we review the cellular Potts model (CPM; also known as the Glazier-Graner-Hogeweg model), an effective computational modeling framework. We discuss its usability for modeling complex developmental phenomena by examining four fundamental examples of tissue morphogenesis: (i) cell sorting, (ii) cyst formation, (iii) tube morphogenesis in kidney development, and (iv) blood vessel formation. The review provides an introduction for biologists for starting simulation analysis using the CPM framework.


Assuntos
Vasos Sanguíneos/embriologia , Rim/embriologia , Modelos Biológicos , Organogênese/fisiologia , Animais , Humanos
16.
PLoS Comput Biol ; 10(8): e1003774, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121971

RESUMO

In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.


Assuntos
Comunicação Celular/fisiologia , Células Endoteliais/citologia , Matriz Extracelular/fisiologia , Modelos Biológicos , Animais , Bovinos , Movimento Celular/fisiologia , Forma Celular/fisiologia , Células Cultivadas , Simulação por Computador , Humanos , Esferoides Celulares/citologia , Esferoides Celulares/fisiologia
17.
iScience ; 27(3): 109085, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380251

RESUMO

A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2'-fucosyllactose (2'-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2'-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2'-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites.

18.
Nat Ecol Evol ; 8(1): 70-82, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37957313

RESUMO

Developmental time is a key life-history trait with large effects on Darwinian fitness. In many insects, developmental time is currently under strong selection to minimize ecological mismatches in seasonal timing induced by climate change. The genetic basis of responses to such selection, however, is poorly understood. To address this problem, we set up a long-term evolve-and-resequence experiment in the beetle Tribolium castaneum and selected replicate, outbred populations for fast or slow embryonic development. The response to this selection was substantial and embryonic developmental timing of the selection lines started to diverge during dorsal closure. Pooled whole-genome resequencing, gene expression analysis and an RNAi screen pinpoint a 222 bp deletion containing binding sites for Broad and Tramtrack upstream of the ecdysone degrading enzyme Cyp18a1 as a main target of selection. Using CRISPR/Cas9 to reconstruct this allele in the homogenous genetic background of a laboratory strain, we unravel how this single deletion advances the embryonic ecdysone peak inducing dorsal closure and show that this allele accelerates larval development but causes a trade-off with fecundity. Our study uncovers a life-history allele of large effect and reveals the evolvability of developmental time in a natural insect population.


Assuntos
Besouros , Tribolium , Animais , Ecdisona , Alelos , Insetos , Tribolium/genética
19.
Plant J ; 69(3): 553-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21955023

RESUMO

The study of transgenic Arabidopsis lines with altered vascular patterns has revealed key players in the venation process, but details of the vascularization process are still unclear, partly because most lines have only been assessed qualitatively. Therefore, quantitative analyses are required to identify subtle perturbations in the pattern and to test dynamic modeling hypotheses using biological measurements. We developed an online framework, designated Leaf Image Analysis Interface (LIMANI), in which venation patterns are automatically segmented and measured on dark-field images. Image segmentation may be manually corrected through use of an interactive interface, allowing supervision and rectification steps in the automated image analysis pipeline and ensuring high-fidelity analysis. This online approach is advantageous for the user in terms of installation, software updates, computer load and data storage. The framework was used to study vascular differentiation during leaf development and to analyze the venation pattern in transgenic lines with contrasting cellular and leaf size traits. The results show the evolution of vascular traits during leaf development, suggest a self-organizing mechanism for leaf venation patterning, and reveal a tight balance between the number of end-points and branching points within the leaf vascular network that does not depend on the leaf developmental stage and cellular content, but on the leaf position on the rosette. These findings indicate that development of LIMANI improves understanding of the interaction between vascular patterning and leaf growth.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Folhas de Planta/crescimento & desenvolvimento , Software , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Interface Usuário-Computador
20.
Bull Math Biol ; 75(8): 1377-99, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23494144

RESUMO

Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.


Assuntos
Modelos Cardiovasculares , Neovascularização Patológica , Neovascularização Fisiológica , Animais , Movimento Celular , Células Endoteliais/fisiologia , Matriz Extracelular/fisiologia , Humanos , Conceitos Matemáticos , Biologia de Sistemas , Fator A de Crescimento do Endotélio Vascular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA