Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 57(11): 6237-6244, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29749734

RESUMO

Guided by predictive theory, a new compound with chemical composition (Cr2/3Zr1/3)2AlC was synthesized by hot pressing of Cr, ZrH2, Al, and C mixtures at 1300 °C. The crystal structure is monoclinic of space group C2/ c and displays in-plane chemical order in the metal layers, a so-called i-MAX phase. Quantitative chemical composition analyses confirmed that the primary phase had a (Cr2/3Zr1/3)2AlC stoichiometry, with secondary Cr2AlC, AlZrC2, and ZrC phases and a small amount of Al-Cr intermetallics. A theoretical evaluation of the (Cr2/3Zr1/3)2AlC magnetic structure was performed, indicating an antiferromagnetic ground state. Also (Cr2/3Hf1/3)2AlC, of the same structure, was predicted to be stable.

2.
Nanoscale ; 11(31): 14720-14726, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31347630

RESUMO

We report the synthesis and characterization of a new laminated i-MAX phase, (V2/3Sc1/3)2AlC, with in-plane chemical ordering between the M-elements. We also present evidence for the solid solution (V2-xScx)2AlC, where x ≤ 0.05. Chemical etching of the Al and Sc results in a two-dimensional (2D) MXene counterpart: V2-xC from the latter phase. Furthermore, etching with HF yields single-sheet MXene of flat morphology, while LiF + HCl gives MXene scrolls. We also show a 4× reduction in etching time for (V2-xScx)2AlC compared to V2AlC, suggesting that traces of Sc changes the phase stability, and make the material more susceptible to etching. The results show a path for improved control of MXene synthesis and morphology, which may be applicable also for other MAX/MXene systems.

3.
Adv Mater ; 30(21): e1706409, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29633399

RESUMO

Structural design on the atomic level can provide novel chemistries of hybrid MAX phases and their MXenes. Herein, density functional theory is used to predict phase stability of quaternary i-MAX phases with in-plane chemical order and a general chemistry (W2/3 M21/3 )2 AC, where M2 = Sc, Y (W), and A = Al, Si, Ga, Ge, In, and Sn. Of over 18 compositions probed, only two-with a monoclinic C2/c structure-are predicted to be stable: (W2/3 Sc1/3 )2 AlC and (W2/3 Y1/3 )2 AlC and indeed found to exist. Selectively etching the Al and Sc/Y atoms from these 3D laminates results in W1.33 C-based MXene sheets with ordered metal divacancies. Using electrochemical experiments, this MXene is shown to be a new, promising catalyst for the hydrogen evolution reaction. The addition of yet one more element, W, to the stable of M elements known to form MAX phases, and the synthesis of a pure W-based MXene establishes that the etching of i-MAX phases is a fruitful path for creating new MXene chemistries that has hitherto been not possible, a fact that perforce increases the potential of tuning MXene properties for myriad applications.

4.
Data Brief ; 10: 576-582, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070549

RESUMO

The data presented in this paper are related to the research article entitled "Theoretical stability and materials synthesis of a chemically ordered MAX phase, Mo2ScAlC2, and its two-dimensional derivate Mo2ScC" (Meshkian et al. 2017) [1]. This paper describes theoretical phase stability calculations of the MAX phase alloy MoxSc3-xAlC2 (x=0, 1, 2, 3), including chemical disorder and out-of-plane order of Mo and Sc along with related phonon dispersion and Bader charges, and Rietveld refinement of Mo2ScAlC2. The data is made publicly available to enable critical or extended analyzes.

5.
Sci Adv ; 3(7): e1700642, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28776034

RESUMO

The enigma of MAX phases and their hybrids prevails. We probe transition metal (M) alloying in MAX phases for metal size, electronegativity, and electron configuration, and discover ordering in these MAX hybrids, namely, (V2/3Zr1/3)2AlC and (Mo2/3Y1/3)2AlC. Predictive theory and verifying materials synthesis, including a judicious choice of alloying M from groups III to VI and periods 4 and 5, indicate a potentially large family of thermodynamically stable phases, with Kagomé-like and in-plane chemical ordering, and with incorporation of elements previously not known for MAX phases, including the common Y. We propose the structure to be monoclinic C2/c. As an extension of the work, we suggest a matching set of novel MXenes, from selective etching of the A-element. The demonstrated structural design on simultaneous two-dimensional (2D) and 3D atomic levels expands the property tuning potential of functional materials.

6.
Nat Commun ; 8: 14949, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28440271

RESUMO

The exploration of two-dimensional solids is an active area of materials discovery. Research in this area has given us structures spanning graphene to dichalcogenides, and more recently 2D transition metal carbides (MXenes). One of the challenges now is to master ordering within the atomic sheets. Herein, we present a top-down, high-yield, facile route for the controlled introduction of ordered divacancies in MXenes. By designing a parent 3D atomic laminate, (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering, and by selectively etching the Al and Sc atoms, we show evidence for 2D Mo1.33C sheets with ordered metal divacancies and high electrical conductivities. At ∼1,100 F cm-3, this 2D material exhibits a 65% higher volumetric capacitance than its counterpart, Mo2C, with no vacancies, and one of the highest volumetric capacitance values ever reported, to the best of our knowledge. This structural design on the atomic scale may alter and expand the concept of property-tailoring of 2D materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA