Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(27): e2113749119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35763574

RESUMO

Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17ß-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders.


Assuntos
Núcleo Arqueado do Hipotálamo , Estrogênios , Fertilidade , Kisspeptinas , Neurônios , Ovário , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Estrogênios/metabolismo , Feminino , Fertilidade/genética , Perfilação da Expressão Gênica , Humanos , Hipogonadismo/congênito , Hipogonadismo/genética , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Ovário/metabolismo
2.
EMBO J ; 39(19): e104633, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761635

RESUMO

Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropilina-1/biossíntese , Comportamento Sexual Animal , Maturidade Sexual , Aumento de Peso , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Masculino , Camundongos , Camundongos Transgênicos , Neuropilina-1/genética
3.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31883645

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Assuntos
Movimento Celular , Hipogonadismo/congênito , Hipogonadismo/genética , Mutação , Fatores de Crescimento Neural/genética , Neurônios/patologia , Adolescente , Animais , Estudos de Coortes , Feminino , Heterozigoto , Humanos , Hipogonadismo/patologia , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/fisiologia , Neurônios/metabolismo , Linhagem , Peixe-Zebra
4.
Cereb Cortex ; 32(2): 418-428, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34322692

RESUMO

We found a region of the zebrafish pallium that shows selective activation upon change in the numerosity of visual stimuli. Zebrafish were habituated to sets of small dots that changed in individual size, position, and density, while maintaining their numerousness and overall surface. During dishabituation tests, zebrafish faced a change in number (with the same overall surface), in shape (with the same overall surface and number), or in size (with the same shape and number) of the dots, whereas, in a control group, zebrafish faced the same stimuli as during the habituation. Modulation of the expression of the immediate early genes c-fos and egr-1 and in situ hybridization revealed a selective activation of the caudal part of the dorso-central division of the zebrafish pallium upon change in numerosity. These findings support the existence of an evolutionarily conserved mechanism for approximate magnitude and provide an avenue for understanding its underlying molecular correlates.


Assuntos
Neurônios , Peixe-Zebra , Animais , Córtex Cerebral , Neurônios/fisiologia , Peixe-Zebra/fisiologia
5.
Eur J Neurosci ; 53(2): 362-375, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692463

RESUMO

The left and right distribution of a set of twenty-six genes in the zebrafish pallium was examined by RT-qPCR experiments. The analysis comprised four general pallial markers (eomesa, emx2, emx3 and prox1); eight genes, dapper1, htr3a, htr3b, htr4, id2, ndr2, pkcß and lmo4, that have been described as asymmetric distributed in the brain of mammals (human and mouse); six genes, arrb2, auts2, baiap2, fez1, gap43 and robo1, asymmetrically distributed in the mammalian cortex, that have been associated with autism in humans; and, eight genes, baz1b, fzd9, limk1, tubgcp5, cyfip1, grik1a, nipa1 and nipa2, which have been associated with developmental dyscalculia, a brain disability linked to brain laterality in humans. We found a leftward bias in the expression of 10 genes (dapper1, htr3a, htr3b, htr4, id2, ndr2, pkcß, auts2, baiap2 and grik1a) and a rightward bias for 5 genes (lmo4, arrb2, fez1, gap43, robo1) in agreement with the data reported in mammals. We also found a rightward lateralization for nipa1 and nipa2, whereas the remaining genes (eomesa, emx2, emx3, prox1, baz1b, cyfip1, fzd9, limk1 and tubgpc5) were bilaterally distributed. These findings suggest a basic homology in the asymmetric expression of several pallial vertebrate genes.


Assuntos
Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Encéfalo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Imunológicos , Proteínas de Peixe-Zebra/genética
6.
Hum Mol Genet ; 27(2): 359-372, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29202173

RESUMO

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disease characterized by absent puberty and infertility due to GnRH deficiency, and is often associated with anosmia [Kallmann syndrome (KS)]. The genetic etiology of CHH is heterogeneous, and more than 30 genes have been implicated in approximately 50% of patients with CHH. We hypothesized that genes encoding axon-guidance proteins containing fibronectin type-III (FN3) domains (similar to ANOS1, the first gene associated with KS), are mutated in CHH. We performed whole-exome sequencing in a cohort of 133 CHH probands to test this hypothesis, and identified rare sequence variants (RSVs) in genes encoding for the FN3-domain encoding protein deleted in colorectal cancer (DCC) and its ligand Netrin-1 (NTN1). In vitro studies of these RSVs revealed altered intracellular signaling associated with defects in cell morphology, and confirmed five heterozygous DCC mutations in 6 probands-5 of which presented as KS. Two KS probands carry heterozygous mutations in both DCC and NTN1 consistent with oligogenic inheritance. Further, we show that Netrin-1 promotes migration in immortalized GnRH neurons (GN11 cells). This study implicates DCC and NTN1 mutations in the pathophysiology of CHH consistent with the role of these two genes in the ontogeny of GnRH neurons in mice.


Assuntos
Receptor DCC/genética , Hipogonadismo/genética , Netrina-1/genética , Adulto , Estudos de Coortes , Receptor DCC/metabolismo , Feminino , Domínio de Fibronectina Tipo III , Hormônio Liberador de Gonadotropina/deficiência , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Masculino , Mutação , Netrina-1/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Sequenciamento do Exoma
7.
Genet Med ; 22(11): 1759-1767, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32724172

RESUMO

PURPOSE: Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes. METHODS: We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues. RESULTS: Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism-two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature. CONCLUSIONS: We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.


Assuntos
Hipogonadismo , Infertilidade , Aconselhamento Genético , Humanos , Hipogonadismo/genética , Mosaicismo , Sequenciamento do Exoma
8.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605267

RESUMO

: The study aimed to highlight the degree of trace element contamination along three sites of Sicily: the Magnisi peninsula (MP), located in proximity to the Augusta-Priolo-Melilli petrochemical plant; the Ragusa agro-ecosystem (RA), characterized by a rural landscape; and the Gela plain (GP), characterized by intensive agriculture and a disused petrochemical plant. We collected biological samples (abraded back feathers and blood) of the Stone Curlew (Burhinus oedicnemus Linnaeus, 1758) as well as soil samples to determine the trace elements concentrations of As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Zn, Se and V using ICP-MS analysis. The results found for the three sites show different trends of accumulation, which depend on the different management and geological characteristics of the areas. The Gela plain and Magnisi peninsula showed a higher degree of contamination (As, Co, Cu, Mn and Se for the Gela plain; Pb and Hg for the Magnisi peninsula). Nevertheless, no critical values were found for either the environment-if the results are compared with the legal limits fixed by the Legislative Decree No. 152/2006, approving the Code on the Environment-or for living organisms-if the results are compared with the toxicological thresholds for birds, especially if the short-term exposure results from the blood values are considered. Only the Se levels in animal blood from the RA and GP were found slightly higher than the minimum level required in bird diets. The positive scenario can be attributed on the one hand to the interruptions of emissions of the Gela refinery around 5 years ago, and on the other hand to the more intense and strict controls that are implemented in the area surrounding the petrochemical pole of Augusta-Priolo-Melilli.


Assuntos
Bioacumulação , Aves/metabolismo , Ecossistema , Monitoramento Ambiental , Oligoelementos/análise , Oligoelementos/metabolismo , Animais
9.
Am J Hum Genet ; 99(3): 770-776, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27588451

RESUMO

Cone-rod degeneration (CRD) belongs to the disease spectrum of retinal degenerations, a group of hereditary disorders characterized by an extreme clinical and genetic heterogeneity. It mainly differentiates from other retinal dystrophies, and in particular from the more frequent disease retinitis pigmentosa, because cone photoreceptors degenerate at a higher rate than rod photoreceptors, causing severe deficiency of central vision. After exome analysis of a cohort of individuals with CRD, we identified biallelic mutations in the orphan gene CEP78 in three subjects from two families: one from Greece and another from Sweden. The Greek subject, from the island of Crete, was homozygous for the c.499+1G>T (IVS3+1G>T) mutation in intron 3. The Swedish subjects, two siblings, were compound heterozygotes for the nearby mutation c.499+5G>A (IVS3+5G>A) and for the frameshift-causing variant c.633delC (p.Trp212Glyfs(∗)18). In addition to CRD, these three individuals had hearing loss or hearing deficit. Immunostaining highlighted the presence of CEP78 in the inner segments of retinal photoreceptors, predominantly of cones, and at the base of the primary cilium of fibroblasts. Interaction studies also showed that CEP78 binds to FAM161A, another ciliary protein associated with retinal degeneration. Finally, analysis of skin fibroblasts derived from affected individuals revealed abnormal ciliary morphology, as compared to that of control cells. Altogether, our data strongly suggest that mutations in CEP78 cause a previously undescribed clinical entity of a ciliary nature characterized by blindness and deafness but clearly distinct from Usher syndrome, a condition for which visual impairment is due to retinitis pigmentosa.


Assuntos
Proteínas de Ciclo Celular/genética , Cílios/patologia , Distrofias de Cones e Bastonetes/complicações , Distrofias de Cones e Bastonetes/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Mutação/genética , Idoso , Alelos , Animais , Cadáver , Proteínas de Ciclo Celular/metabolismo , Estudos de Coortes , Distrofias de Cones e Bastonetes/patologia , Distrofias de Cones e Bastonetes/fisiopatologia , Exoma/genética , Olho/embriologia , Olho/metabolismo , Proteínas do Olho/metabolismo , Feminino , Fibroblastos/patologia , Grécia , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/fisiopatologia , Heterozigoto , Homozigoto , Humanos , Íntrons/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Linhagem , Ligação Proteica , RNA Mensageiro/análise , Suécia , Transcriptoma , Síndromes de Usher/patologia
10.
Am J Physiol Endocrinol Metab ; 315(5): E833-E847, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29944388

RESUMO

ß-Klotho (encoded by Klb) is an obligate coreceptor, mediating both fibroblast growth factor (FGF)15 and FGF21 signaling. Klb-/- mice are refractory to metabolic FGF15 and FGF21 action and exhibit derepressed (increased) bile acid (BA) synthesis. Here, we deeply phenotyped male Klb-/- mice on a pure C57BL/6J genetic background, fed a chow diet focusing on metabolic aspects. This aims to better understand the physiological consequences of concomitant FGF15 and FGF21 signaling deficiency, in particular on the gut-liver axis. Klb-/- mice present permanent growth restriction independent of adiposity and energy balance. Klb-/- mice also exhibit few changes in carbohydrate metabolism, combining normal gluco-tolerance, insulin sensitivity, and fasting response with increased gluconeogenic capacity and decreased glycogen mobilization. Livers of Klb-/- mice reveal pathologic features, including a proinflammatory status and initiation of fibrosis. These defects are associated to a massive shift in BA composition in the enterohepatic system and blood circulation featured by a large excess of microbiota-derived deoxycholic acid, classically known for its genotoxicity in the gastrointestinal tract. In conclusion, ß-Klotho is a gatekeeper of hepatic integrity through direct action (mediating FGF21 anti-inflammatory signaling) and indirect mechanisms (mediating FGF15 signaling that maintains BA level and composition).


Assuntos
Ácidos e Sais Biliares/metabolismo , Peso Corporal/fisiologia , Trato Gastrointestinal/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , Adiposidade/genética , Animais , Metabolismo Energético/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Gluconeogênese/fisiologia , Corpos Cetônicos/sangue , Proteínas Klotho , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Transdução de Sinais/fisiologia
11.
Molecules ; 23(8)2018 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-30103421

RESUMO

Reversine is a potent antitumor 2,6-diamino-substituted purine acting as an Aurora kinases inhibitor and interfering with cancer cell cycle progression. In this study we describe three reversine-related molecules, designed by docking calculation, that present structural modifications in the diamino units at positions 2 and 6. We investigated the conformations of the most stable prototropic tautomers of one of these molecules, the N6-cyclohexyl-N6-methyl-N2-phenyl-7H-purine-2,6-diamine (3), by Density Functional Theory (DFT) calculation in the gas phase, water and chloroform, the last solvent considered to give insights into the detection of broad signals in NMR analysis. In all cases the HN(9) tautomer resulted more stable than the HN(7) form, but the most stable conformations changed in different solvents. Molecules 1⁻3 were evaluated on MCF-7 breast and HCT116 colorectal cancer cell lines showing that, while being less cytotoxic than reversine, they still caused cell cycle arrest in G2/M phase and polyploidy. Unlike reversine, which produced a pronounced cell cycle arrest in G2/M phase in all the cell lines used, similar concentrations of 1⁻3 were effective only in cells where p53 was deleted or down-regulated. Therefore, our findings support a potential selective role of these structurally simplified, reversine-related molecules in p53-defective cancer cells.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Purinas/síntese química , Purinas/farmacologia , Antineoplásicos/química , Neoplasias da Mama , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Neoplasias Colorretais , Feminino , Humanos , Masculino , Micro-Ondas , Estrutura Molecular , Purinas/química , Relação Estrutura-Atividade
12.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24618750

RESUMO

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Fertilidade/fisiologia , Neuropilina-1/fisiologia , Semaforina-3A/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Ligantes , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de Sinais
13.
Stem Cells ; 33(8): 2496-508, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25913744

RESUMO

It has long been known that the depletion of bone morphogenetic protein (BMP) is one of the key factors necessary for the development of anterior neuroectodermal structures. However, the precise molecular mechanisms that underlie forebrain regionalization are still not completely understood. Here, we show that Noggin1 is involved in the regionalization of anterior neural structures in a dose-dependent manner. Low doses of Noggin1 expand prosencephalic territories, while higher doses specify diencephalic and retinal regions at the expense of telencephalic areas. A similar dose-dependent mechanism determines the ability of Noggin1 to convert pluripotent cells in prosencephalic or diencephalic/retinal precursors, as shown by transplant experiments and molecular analyses. At a molecular level, the strong inhibition of BMP signaling exerted by high doses of Noggin1 reinforces the Nodal/transforming growth factor (TGF)ß signaling pathway, leading to activation of Gli1 and Gli2 and subsequent activation of Sonic Hedgehog (SHH) signaling. We propose a new role for Noggin1 in determining specific anterior neural structures by the modulation of TGFß and SHH signaling.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Transporte/metabolismo , Células-Tronco Pluripotentes/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas de Transporte/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Retina/citologia , Telencéfalo/citologia , Telencéfalo/embriologia , Fator de Crescimento Transformador beta/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis
14.
Mol Ecol ; 24(5): 1135-49, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25683348

RESUMO

The microbiome can significantly impact host phenotypes and serve as an additional source of heritable genetic variation. While patterns across eukaryotes are consistent with a role for symbiotic microbes in host macroevolution, few studies have examined symbiont-driven host evolution or the ecological implications of a dynamic microbiome across temporal, spatial or ecological scales. The pea aphid, Acyrthosiphon pisum, and its eight heritable bacterial endosymbionts have served as a model for studies on symbiosis and its potential contributions to host ecology and evolution. But we know little about the natural dynamics or ecological impacts of the heritable microbiome of this cosmopolitan insect pest. Here we report seasonal shifts in the frequencies of heritable defensive bacteria from natural pea aphid populations across two host races and geographic regions. Microbiome dynamics were consistent with symbiont responses to host-level selection and findings from one population suggested symbiont-driven adaptation to seasonally changing parasitoid pressures. Conversely, symbiont levels were negatively correlated with enemy-driven mortality when measured across host races, suggesting important ecological impacts of host race microbiome divergence. Rapid drops in symbiont frequencies following seasonal peaks suggest microbiome instability in several populations, with potentially large costs of 'superinfection' under certain environmental conditions. In summary, the realization of several laboratory-derived, a priori expectations suggests important natural impacts of defensive symbionts in host-enemy eco-evolutionary feedbacks. Yet negative findings and unanticipated correlations suggest complexities within this system may limit or obscure symbiont-driven contemporary evolution, a finding of broad significance given the widespread nature of defensive microbes across plants and animals.


Assuntos
Adaptação Biológica/genética , Afídeos/microbiologia , Enterobacteriaceae/classificação , Microbiota , Estações do Ano , Animais , Enterobacteriaceae/genética , Repetições de Microssatélites , Dados de Sequência Molecular , New England , Análise de Sequência de DNA , Simbiose , Temperatura
15.
Cell Mol Life Sci ; 70(6): 1095-111, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23069989

RESUMO

We investigated the effects of bone morphogenetic proteins (BMPs) in determining the positional identity of neurons generated in vitro from mouse embryonic stem cells (ESCs), an aspect that has been neglected thus far. Classical embryological studies in lower vertebrates indicate that BMPs inhibit the default fate of pluripotent embryonic cells, which is both neural and anterior. Moreover, mammalian ESCs generate neurons more efficiently when cultured in a minimal medium containing BMP inhibitors. In this paper, we show that mouse ESCs produce, secrete, and respond to BMPs during in vitro neural differentiation. After neuralization in a minimal medium, differentiated ESCs show a gene expression profile consistent with a midbrain identity, as evaluated by the analysis of a number of markers of anterior-posterior and dorsoventral identity. We found that BMPs endogenously produced during neural differentiation mainly act by inhibiting the expression of a telencephalic gene profile, which was revealed by the treatment with Noggin or with other BMP inhibitors. To better characterize the effect of BMPs on positional fate, we compared the global gene expression profiles of differentiated ESCs with those of embryonic forebrain, midbrain, and hindbrain. Both Noggin and retinoic acid (RA) support neuronal differentiation of ESCs, but they show different effects on their positional identity: whereas RA supports the typical gene expression profile of hindbrain neurons, Noggin induces a profile characteristic of dorsal telencephalic neurons. Our findings show that endogenously produced BMPs affect the positional identity of the neurons that ESCs spontaneously generate when differentiating in vitro in a minimal medium. The data also support the existence of an intrinsic program of neuronal differentiation with dorsal telencephalic identity. Our method of ESC neuralization allows for fast differentiation of neural cells via the same signals found during in vivo embryonic development and for the acquisition of cortical identity by the inhibition of BMP alone.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/citologia , Transdução de Sinais/fisiologia , Animais , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Perfilação da Expressão Gênica , Imuno-Histoquímica , Técnicas In Vitro , Camundongos , Análise em Microsséries , Neurônios/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Tretinoína/metabolismo
16.
Sci Rep ; 14(1): 4474, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395997

RESUMO

Cerebral asymmetry is critical for typical brain function and development; at the same time, altered brain lateralization seems to be associated with neuropsychiatric disorders. Zebrafish are increasingly emerging as model species to study brain lateralization, using asymmetric development of the habenula, a phylogenetically old brain structure associated with social and emotional processing, to investigate the relationship between brain asymmetry and social behavior. We exposed 5-h post-fertilization zebrafish embryos to valproic acid (VPA), a compound used to model the core signs of ASD in many vertebrate species, and assessed social interaction, visual lateralization and gene expression in the thalamus and the telencephalon. VPA-exposed zebrafish exhibit social deficits and a deconstruction of social visual laterality to the mirror. We also observe changes in the asymmetric expression of the epithalamic marker leftover and in the size of the dorsolateral part of the habenula in adult zebrafish. Our data indicate that VPA exposure neutralizes the animals' visual field bias, with a complete loss of the left-eye use bias in front of their own mirror image, and alters brain asymmetric gene expression and morphology, opening new perspectives to investigate brain lateralization and its link to atypical social cognitive development.


Assuntos
Habenula , Perciformes , Animais , Ácido Valproico/efeitos adversos , Peixe-Zebra/genética , Comportamento Animal , Larva , Comportamento Social , Expressão Gênica
17.
World Neurosurg ; 184: 125, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219802

RESUMO

Isolated unilateral hydrocephalus (IUH) is a condition caused by unilateral obstruction of the foramen of Monro.1 Etiopathogenic causes include tumors, congenital lesions, infective ventriculitis, intraventricular haemorrhage, and iatrogenic causes such as the presence of contralateral shunts.2,3 Neuroendoscopic management is considered the "gold-standard" treatment in IUH.4 Even if endoscopic septostomy and foraminoplasty in IUH are well-known procedures,5,6 IUH after an interhemispheric transcallosal transchoroidal approach for removal of a III ventricle colloid cyst is a complication barely described in literature. Video 1 describes this rare complication and the neuroendoscopic treatment adopted, including the operative room setup, patient's positioning, instrumentation needed, and a series of intraoperative tips for the performance of septostomy and Monroplasty via a single, precoronal burr hole. The scalp entry point and endoscope trajectory, homolateral to the dilated ventricle, were planned on the neuronavigation system. The avascular septal zone away from the septal veins and body of the fornix was reached, and the ostomy was performed. At the end of the procedure, Monroplasty was performed, too. The procedure was effective in solving the hydrocephalus and patient's clinical picture. No surgical complications occurred. Imaging demonstrated an evident and progressive reduction of enlarged lateral ventricle. In authors' opinion, the single burr-hole approach, ipsilateral to the enlarged ventricle, provides an optimal identification the intraventricular anatomy and allows Monroplasty to be performed, if deemed feasible during surgery. The patient consented to the procedure. The participants and any identifiable individuals consented to publication of their images.


Assuntos
Cistos Coloides , Hidrocefalia , Neuroendoscopia , Terceiro Ventrículo , Humanos , Ventrículos Laterais , Terceiro Ventrículo/cirurgia , Cistos Coloides/diagnóstico por imagem , Cistos Coloides/cirurgia , Cistos Coloides/complicações , Ventrículos Cerebrais/cirurgia , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Neuroendoscopia/métodos
18.
Nat Genet ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951643

RESUMO

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.

19.
Hum Mol Genet ; 20(24): 4759-74, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21903667

RESUMO

Reproduction in mammals is dependent on the function of specific neurons that secrete gonadotropin-releasing hormone-1 (GnRH-1). These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. Alterations in this migratory process lead to defective GnRH-1 secretion, resulting in heterogeneous genetic disorders such as idiopathic hypogonadotropic hypogonadism (IHH), and other reproductive diseases characterized by the reduction or failure of sexual competence. Combining mouse genetics with in vitro models, we demonstrate that Semaphorin 7A (Sema7A) is essential for the development of the GnRH-1 neuronal system. Loss of Sema7A signaling alters the migration of GnRH-1 neurons, resulting in significantly reduced numbers of these neurons in the adult brain as well as in reduced gonadal size and subfertility. We also show that GnRH-1 cells differentially express the Sema7 receptors ß1-integrin and Plexin C1 as a function of their migratory stage, whereas the ligand is robustly expressed along developing olfactory/vomeronasal fibers. Disruption of Sema7A function in vitro inhibits ß1-integrin-mediated migration. Analysis of Plexin C1(-/-) mice did not reveal any difference in the migratory process of GnRH-1 neurons, indicating that Sema7A mainly signals through ß1-integrin to regulate GnRH-1 cell motility. In conclusion, we have identified Sema7A as a gene implicated in the normal development of the GnRH-1 system in mice and as a genetic marker for the elucidation of some forms of GnRH-1 deficiency in humans.


Assuntos
Antígenos CD/metabolismo , Movimento Celular , Fertilidade , Hormônio Liberador de Gonadotropina/metabolismo , Gônadas/embriologia , Integrina beta1/metabolismo , Precursores de Proteínas/metabolismo , Semaforinas/metabolismo , Transdução de Sinais , Animais , Axônios/metabolismo , Encéfalo/embriologia , Encéfalo/patologia , Contagem de Células , Gônadas/anormalidades , Gônadas/metabolismo , Gônadas/patologia , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/metabolismo , Receptores de Superfície Celular/metabolismo , Semaforinas/deficiência , Testículo/embriologia , Testículo/metabolismo , Testículo/patologia , Órgão Vomeronasal/embriologia , Órgão Vomeronasal/metabolismo
20.
medRxiv ; 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37503126

RESUMO

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively. These common variant analyses were supported by exome sequence analysis of ~220,000 women, identifying several genes, including rare loss of function variants in ZNF483 which abolished the impact of polygenic risk. Next, we implicated 660 genes in pubertal development using a combination of in silico variant-to-gene mapping approaches and integration with dynamic gene expression data from mouse embryonic GnRH neurons. This included an uncharacterized G-protein coupled receptor GPR83, which we demonstrate amplifies signaling of MC3R, a key sensor of nutritional status. Finally, we identified several genes, including ovary-expressed genes involved in DNA damage response that co-localize with signals associated with menopause timing, leading us to hypothesize that the ovarian reserve might signal centrally to trigger puberty. Collectively these findings extend our understanding of the biological complexity of puberty timing and highlight body size dependent and independent mechanisms that potentially link reproductive timing to later life disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA