Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nanotechnology ; 35(46)2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39116890

RESUMO

The translation of silver-based nanotechnology 'from bench to bedside' requires a deep understanding of the molecular aspects of its biological action, which remains controversial at low concentrations and non-spherical morphologies. Here, we present a hemocompatibility approach based on the effect of the distinctive electronic charge distribution in silver nanoparticles (nanosilver) on blood components. According to spectroscopic, volumetric, microscopic, dynamic light scattering measurements, pro-coagulant activity tests, and cellular inspection, we determine that at extremely low nanosilver concentrations (0.125-2.5µg ml-1), there is a relevant interaction effect on the serum albumin and red blood cells (RBCs). This explanation has its origin in the surface charge distribution of nanosilver particles and their electron-mediated energy transfer mechanism. Prism-shaped nanoparticles, with anisotropic charge distributions, act at the surface level, generating a compaction of the native protein molecule. In contrast, the spherical nanosilver particle, by exhibiting isotropic surface charge, generates a polar environment comparable to the solvent. Both morphologies induce aggregation at NPs/bovine serum albumin ≈ 0.044 molar ratio values without altering the coagulation cascade tests; however, the spherical-shaped nanosilver exerts a negative impact on RBCs. Overall, our results suggest that the electron distributions of nanosilver particles, even at extremely low concentrations, are a critical factor influencing the molecular structure of blood proteins' and RBCs' membranes. Isotropic forms of nanosilver should be considered with caution, as they are not always the least harmful.


Assuntos
Eritrócitos , Nanopartículas Metálicas , Soroalbumina Bovina , Prata , Prata/química , Nanopartículas Metálicas/química , Eritrócitos/metabolismo , Eritrócitos/química , Humanos , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Propriedades de Superfície , Animais , Bovinos , Coagulação Sanguínea/efeitos dos fármacos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/química , Teste de Materiais
2.
Langmuir ; 34(7): 2471-2480, 2018 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-29361824

RESUMO

Bioceramic nanoparticles exhibit excellent features that enable them to function as an ideal material for hard tissue engineering. However, to fully understand their behavior, it is of crucial importance to understand their behavior within the fluids of the human body. To achieve this goal, we have studied the interaction between hydroxyapatite nanorods (HA) and bovine serum albumin (BSA). First, we describe the surface morphology of the nanoparticle. Then, the main characteristics of the physiological interplay of BSA and the hydroxyapatite nanoparticle are presented by using a battery of techniques: ITC, zeta potential, UV-vis, fluorescence, and CD. Experimental data was analyzed by developing specific approaches to determining important parameters such as rates, affinities, and stochiometries of protein associated with the nanoparticles. ITC has been confirmed as a powerful technique for determining the affinity, binding, and thermodynamics of BSA-nanoparticle interactions. Careful quantitative assessment of the kinetic properties of the adsorption were revealed by UV-vis and fluorescence measurements. Finally, CD measurements highlight the important role of protein flexibility in these kinds of systems.


Assuntos
Nanopartículas/química , Coroa de Proteína/química , Adsorção , Humanos , Ligação Proteica , Coroa de Proteína/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismo , Espectrometria de Fluorescência , Termodinâmica
3.
Biochim Biophys Acta ; 1860(2): 452-64, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26656883

RESUMO

BACKGROUND: Cerium oxide (CeO2) and Ce-doped nanostructured materials (NMs) are being seen as innovative therapeutic tools due to their exceptional antioxidant effects; nevertheless their bio-applications are still in their infancy. METHODS: TiO2, Ce-TiO2 and CeO2-TiO2 NMs were synthesized by a bottom-up microemulsion-mediated strategy and calcined during 7h at 650°C under air flux. The samples were compared to elucidate the physicochemical characteristics that determine cellular uptake, toxicity and the influence of redox balance between the Ce(3+)/Ce(4+) on the cytoprotective role against an exogenous ROS source: H2O2. Fibroblasts were selected as a cell model because of their participation in wound healing and fibrotic diseases. RESULTS: Ce-TiO2 NM obtained via sol-gel reaction chemistry of metallic organic precursors exerts a real cytoprotective effect against H2O2 over fibroblast proliferation, while CeO2 pre-formed nanoparticles incorporated to TiO2 crystalline matrix lead to a harmful CeO2-TiO2 material. TiO2 was processed by the same pathways as Ce-TiO2 and CeO2-TiO2 NM but did not elicit any adverse or protective influence compared to controls. CONCLUSIONS: It was found that the Ce atoms source and its concentration have a clear effect on material's physicochemical properties and its subsequent influence in the cellular response. It can induce a range of biological reactions that vary from cytotoxic to cytoprotective. GENERAL SIGNIFICANCE: Even though there are still some unresolved issues and challenges, the unique physical and chemical properties of Ce-based NMs are fascinating and versatile resources for different biomedical applications.


Assuntos
Cério/farmacologia , Citoproteção , Fibroblastos/efeitos dos fármacos , Peróxido de Hidrogênio/toxicidade , Nanoestruturas , Titânio/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos
4.
Biopolymers ; 103(7): 393-405, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25787348

RESUMO

The hydration of the polypeptide network is a determinant factor to be controlled on behalf of the design of precise functional tissue scaffolding. Here we present an exhaustive study of the hydrodynamic and crowding evolution of aqueous gelatin-hydroxyapatite systems with the aim of increasing the knowledge about the biomimesis of collagen mineralization; and how it can be manipulated for the preparation of collagenous derived frameworks with specific morphological characteristics. The solution's density and viscosity evaluation measurements in combination with spectroscopic techniques revealed that there is a progressive association of protein chain that can be influenced by the amount of hydroxyapatite nanorods. Gelatin and additives' concentration effect on the morphology of the gelatin scaffolds was investigated. Transverse and longitudinal sections of the obtained scaffolds were taken and analyzed using optical microscopy. It can be seen that the porous size and shape of gelatin assemblies can be easily adjusted by controlling the gelatin/HAp ratio in the solution used as template in agreement with our statement.


Assuntos
Durapatita/química , Gelatina/química , Alicerces Teciduais/química
5.
Langmuir ; 31(44): 12009-18, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26484726

RESUMO

Studies of the self-aggregation of binary systems are of both theoretical and practical importance. They provide an opportunity to investigate the influence of the molecular structure of the hydrophobe on the nonideality of mixing. On the other hand, linear free energy relationship (LFER) models, such as Hansch's equations, may be used to predict the properties of chemical compounds such as drugs or surfactants. However, the task becomes more difficult once we want to predict simultaneaously the effect over multiple output properties of binary systems of perturbations under multiple input experimental boundary conditions (b(j)). As a consequence, we need computational chemistry or chemoinformatics models that may help us to predict different properties of the autoaggregation process of mixed surfactants under multiple conditions. In this work, we have developed the first model that combines perturbation theory (PT) and LFER ideas. The model uses as input covariance PT operators (CPTOs). CPTOs are calculated as the difference between covariance ΔCov((i)µ(k)) functions before and after multiple perturbations in the binary system. In turn, covariances calculated as the product of two Box-Jenkins operators (BJO) operators. BJOs are used to measure the deviation of the structure of different chemical compounds from a set of molecules measured under a given subset of experimental conditions. The best CPT-LFER model found predicted the effects of 25,000 perturbations over 9 different properties of binary systems. We also reported experimental studies of different experimental properties of the binary system formed by sodium glycodeoxycholate and didodecyldimethylammonium bromide (NaGDC-DDAB). Last, we used our CPT-LFER model to carry out a 1000 data point simulation of the properties of the NaGDC-DDAB system under different conditions not studied experimentally.

6.
Biochim Biophys Acta ; 1830(11): 5014-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891938

RESUMO

BACKGROUND: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. METHODS: The surface properties of four hydroxyapatite materials templated by different micelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50nm length organized in hierarchical structures with different micro-rough characteristics. RESULTS: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk>2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk≤2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. CONCLUSIONS: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. GENERAL SIGNIFICANCE: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Nanotubos/química , Animais , Células Cultivadas , Cinética , Micelas , Osteoblastos/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Ratos , Relação Estrutura-Atividade , Propriedades de Superfície , Engenharia Tecidual/métodos
7.
J Mater Chem B ; 12(36): 8993-9004, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39145426

RESUMO

Among external stimuli-responsive therapy approaches, those using near infrared (NIR) light irradiation have attracted significant attention to treat bone-related diseases and bone tissue regeneration. Therefore, the development of metallic biomaterials sensitive to NIR stimuli is an important area of research in orthopaedics. In this study, we have generated in situ prism-shaped silver nanoparticles (p-AgNPs) in a biomorphic nano-holed TiO2 coating on a Ti6Al4V alloy (a-Ti6Al4V). Insertion of p-AgNPs does not disturb the periodically arranged sub-wavelength-sized unit cell on the a-Ti6Al4V dielectric structure, while they exacerbate its peculiar optical response, which results in a higher NIR reflectivity and high efficiency of NIR photothermal energy conversion suitable to bacterial annihilation. Together, these results open a promising path toward strategic bone therapeutic procedures, providing novel insights into precision medicine.


Assuntos
Ligas , Antibacterianos , Raios Infravermelhos , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Titânio , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Prata/química , Prata/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Tamanho da Partícula
8.
Langmuir ; 29(7): 2350-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23360423

RESUMO

Pure decahedral anatase TiO(2) particles with high content of reactive {001} facets were obtained from titanium(IV) tetrachloride (TiCl(4)) using a microemulsions droplet system at specific conditions as chemical microreactor. The product was systematically characterized by X-ray diffraction, field-emission scanning and transmission electron microscopy (FE-SEM, TEM), N(2) adsorption-desorption isotherms, FT-IR and UV-vis spectroscopy, and photoluminescence studies. The obtained cuboids around 90 nm in size have a uniform and dense surface morphology with a BET specific surface area of 11.91 m(2) g(-1) and a band gap energy (3.18 eV) slightly inferior to the anatase dominated by the less-reactive {101} surface (3.20 eV). The presence of reactive facets on titania anatase favors the biomimetic growth of amorphous tricalcium phosphate after the first day of immersion in simulated human plasma. The results presented here can facilitate and improve the integration of anchored implants and enhance the biological responses to the soft tissues.


Assuntos
Nanopartículas/química , Nanoestruturas/química , Nanotecnologia/métodos , Titânio/química
9.
ACS Appl Mater Interfaces ; 15(21): 25884-25897, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37208817

RESUMO

Following the secular idea of ″restitutio ad integrum″, regeneration is the pursued option to restore bones lost after a disease; accordingly, complementing antibiotic and regeneration capacity to bone grafts represents a great scientific success. This study is a framework proposal for understanding the antimicrobial effect of biocompatible nano-hydroxyapatite/MoOx (nano-HA/MoOx) platforms on the basis of their electroactive behavior. Through cyclic voltammetry and chronoamperometry measurements, the electron transference capacity of nano-HA and nano-HA/MoOx electrodes was determined in the presence of pathogenic organisms: Pseudomonas aeruginosa and Staphylococcus aureus. Faradaic processes were confirmed and related to the switch of MoO42-/PO43- groups in the original hexagonal nano-HA crystal lattice and to the extent of OH vacancies that act as electron acceptors. Microscopic analysis of bacteria's ultrastructure showed a disruptive effect on the cytoplasmic membrane upon direct contact with the materials, which is not evident in the presence of eukaryotic cells. Experiments support the existence of a type of extracellular electron transfer (EET) process that alters the function of the bacterial cytoplasmic membrane, accelerating their death. Our findings provide strong quantitative support for a drug-independent biocidal physical approach based on EET processes between microorganisms and phosphate ceramics that can be used to combat local orthopedic infections associated with implants.


Assuntos
Durapatita , Infecções Estafilocócicas , Humanos , Durapatita/farmacologia , Durapatita/química , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Osso e Ossos
10.
ACS Appl Mater Interfaces ; 14(4): 5843-5855, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35048694

RESUMO

Near-infrared (NIR) radiation plays an important role in guided external stimulus therapies; its application in bone-related treatments is becoming more and more frequent. Therefore, metallic biomaterials that exhibit properties activated by NIR are promising for further orthopedic procedures. In this work, we present an adapted electroforming approach to attain a biomorphic nano-holed TiO2 coating on Ti6Al4V alloy. Through a precise control of the anodization conditions, structures revealed the formation of localized nano-pores arranged in a periodic assembly. This specific organization provoked higher stability against thermal oxidation and precise hydrophobic wettability behavior according to Cassie-Baxter's model; both characteristics are a prerequisite to ensure a favorable biological response in an implantable structure for guided bone regeneration. In addition, the periodically arranged sub-wavelength-sized unit cell on the metallic-dielectric structure exhibits a peculiar optical response, which results in higher NIR reflectivity. Accordingly, we have proved that this effect enhances the efficiency of the scattering processes and provokes a significant improvement of light confinement producing a spontaneous NIR fluorescence emission. The combination of the already favorable mechanical and biocompatibility properties of Ti6Al4V, along with suitable thermal stability, wetting, and electro-optical behavior, opens a promising path toward strategic bone therapeutic procedures.


Assuntos
Ligas/química , Materiais Biomiméticos/química , Materiais Revestidos Biocompatíveis/química , Ligas/efeitos da radiação , Materiais Biomiméticos/efeitos da radiação , Materiais Revestidos Biocompatíveis/efeitos da radiação , Interações Hidrofóbicas e Hidrofílicas , Raios Infravermelhos , Porosidade , Titânio/química , Titânio/efeitos da radiação , Molhabilidade
11.
Langmuir ; 27(14): 8905-12, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21671606

RESUMO

Silica-based nanomaterials are of great interest because of their potential applications in constructing electronic and optoelectronic nanodevices. Especially significant are those that combine the properties of photonic crystal with a fibrous semiconductor structure. Here we report the use of microemulsion droplet systems as a simple and controllable route for the synthesis of 3D opals materials with an unusual fibrous microstructure similar to those that exist in nature. By this method, we demonstrate the creation of very long fibrils of 30-50 nm diameter and more than 20 µm length showing simultaneous short and long wavelength light emissions and band gap values (5.50 and 4.41 eV) comparable to those obtained for silicon-based metal oxide semiconductors.

12.
J Phys Chem B ; 113(6): 1655-61, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19159271

RESUMO

The interaction between two serum blood proteins, namely human serum albumin (HSA) and human immunoglobulin G (IgG), with 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) liposomes has been studied in detail using dynamic light scattering, flow cytometry, enzyme-linked immunosorbent assay (ELISA), electrophoretic mobility, differential scanning calorimetry (DSC), and surface tension measurements. HSA and IgG interact with liposomes forming molecular aggregates that remain stable at protein concentrations beyond those of total liposome coverage. Both HSA and IgG penetrate into the liposome bilayer. An ELISA assay indicates that the Fc region of IgG is the one that is immersed in the DMPC membrane. The liposome-protein interaction is mainly of electrostatic nature, but an important hydrophobic contribution is also present.


Assuntos
Dimiristoilfosfatidilcolina/química , Imunoglobulina G/química , Lipossomos/química , Albumina Sérica/química , Varredura Diferencial de Calorimetria , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Luz , Espalhamento de Radiação , Tensão Superficial , Temperatura
13.
Nanoscale ; 11(37): 17277-17292, 2019 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-31512695

RESUMO

Nowadays, the repair of large-size bone defects represents a huge medical challenge. A line of attack is the construction of advanced biomaterials having multifunctional properties. In this work, we show the creation of biocompatible MoOx-hydroxyapatite nanoparticles (nano-HA/MoOx) that simultaneously exhibit self-activated fluorescence and antibiotic skills. Along this text, we demonstrate that the insertion of molybdenum, an essential trace element, into the non-stoichiometric calcium deficient hydroxyapatite lattice generates intrinsic electronic point defects that exacerbate its epifluorescence blue emission and provokes new red emissions, preserving, always, its bioactivity. Furthermore, these point defects, acting as electron acceptors, stimulate the materials' biological redox status and promote the death of pathogen microorganisms after their direct contact. A putative mechanism, by which bacteria lose electrons from their metabolic circuit that alter the function of their cytoplasmic membrane and potentially die, agrees with our results. Our findings highlight the importance of tuning the electronic communications between biomaterial interfaces and biological units, and support the use of self-fluorescent MoOx-hydroxyapatite nanoparticles as fundamental building blocks for new real-time imaging platforms against bone infection.


Assuntos
Antibacterianos/química , Infecções Bacterianas/tratamento farmacológico , Durapatita/química , Corantes Fluorescentes/química , Nanopartículas/química , Osteomielite/tratamento farmacológico , Nanomedicina Teranóstica
14.
Biophys Chem ; 132(1): 39-46, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17967503

RESUMO

Bile acids (deoxycholic and dehydrocholic acids) spread mixed monolayers behavior at the air/water interface were studied as a function of subphase pH using a constant surface pressure penetration Langmuir balance based on the Axisymmetric Drop Shape Analysis (ADSA). We examined the influence of electrostatic, hydrophobic and hydration forces on the interaction between amphiphilic molecules at the interface by the collapse area values, the thermodynamic parameters and equation of state virial coefficients analysis. The obtained results showed that at neutral (pH=6.7) or basic (pH=10) subphase conditions the collapse areas values are similar to that of cholanoic acid and consistent with the cross-sectional area of the steroid nucleus (approximately 40 A(2)). The Gibbs energy of mixing values (DeltaG(mix)<0) and the first virial coefficients of the equation of state (b(0)<1) indicated that a miscible monolayer with laterally structured microdomains existed. The aggregation number (1/b(0)) was estimated within the order of 6 (pH=6.7) and 3 (pH=10). At pH=3.2, acidic subphase conditions, no phase separation occurs (DeltaG(mix)<0) but a high expanded effect of the monolayer could be noted. The mixed monolayer behavior was no ideal and no aggregates were formed (b(0)> or =1). Such behavior indicates that the polar groups of the molecules interacts each other more strongly by repulsive electrostatic forces than with the more hydrophobic part of the molecule.


Assuntos
Materiais Biomiméticos/química , Ácido Desidrocólico/química , Ácido Desoxicólico/química , Água/química , Ar , Concentração de Íons de Hidrogênio
15.
J Hazard Mater ; 152(2): 765-77, 2008 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17764835

RESUMO

In this work, the aim was to evaluate the remotion (adsorption plus degradation) of two reactive dyes, Methylene Blue (MB) and Benzopurpurin (BP), from aqueous solutions by the utilization of TiO2-chitosan microporous materials. Two different TiO2-chitosan hybrid materials were synthesized: TiO2-Chit A with 280 mg chitosan/gTiO2 and TiO2-Chit B with 46.76 mg chitosan/g TiO2. Adsorption data obtained at different solution temperatures (25, 35, and 45 degrees C) revealed an irreversible adsorption that decrease with the increment of T. Langmuir, Freundlich and Sips isotherm equation were applied to the experimental data. The obtained parameters and correlation coefficient showed that the adsorption of both dyes on TiO2-Chit A at the three work temperatures was best predicted by the Langmuir isotherm, while Sips equation adjusted better to adsorption data on TiO2-Chit B. The adsorption enthalpy was relatively high and varied with T, indicating that interaction between adsorbent and adsorbate molecules was not only physical but chemical. There is a change in the adsorption heat capacity, (Delta(ads)C(p)<0), related with intense hydrophobic interactions. The kinetic adsorption data were processed by the application of Lagergren and Avrami models. It was found that adsorption of both dyes on both adsorbents under the operating conditions was best predicted by Avrami model. The variation of kinetic order, n, and k(av) with T are related to a pore followed by intra particle diffusion control of the adsorption rate. MB photodegradation on both TiO2-chitosan hybrid materials was of 91 (in A) and 41% (in B) and augmented with the chitosan content. For BP can be seen that the process in darkness resulted in a high remotion capacity than in UV light presence.


Assuntos
Quitosana , Corantes/isolamento & purificação , Resíduos Industriais , Titânio , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Indústria Têxtil
16.
Int J Pharm ; 548(1): 559-570, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30016671

RESUMO

Local delivery systems from an osteoconductive biomaterial are suggested as a promising strategy to avoid simultaneously peri-implant traumas and to induce tissue regeneration. In this work, it is detailed the design and construction of a multi-drug delivery formulation based on lipid membrane mimetic coated nano-hydroxyapatite, LMm/nano-HA, as a bone-specific drug delivery approach. The optimal LMm/nano-HA formulation was selected after analysing the lipid/nano-HA interaction by dynamic light scattering (DLS), ζ-potential, transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC) and UV-vis spectroscopy. After the initial screening, Ciprofloxacin and Ibuprofen simultaneous -load and -release efficiency from selected LMm/nano-HA was assessed. pH-responsive kinetic profiles of local drug distribution were characterized and compared with currently applied systemic doses. Finally, the systems' biocompatibility and drug released activity were positively validated. The obtained results demonstrated that LMm/nano-HA formulations can represent a valuable multi-modal platform in bone tissue therapies.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Durapatita , Lipídeos , Membranas Artificiais , Nanopartículas , Animais , Antibacterianos/administração & dosagem , Antibacterianos/química , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/química , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Liberação Controlada de Fármacos , Durapatita/administração & dosagem , Durapatita/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Lipídeos/administração & dosagem , Lipídeos/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Osteoblastos/efeitos dos fármacos , Tamanho da Partícula , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Ratos Wistar , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
17.
ACS Appl Mater Interfaces ; 10(23): 19534-19544, 2018 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-29799727

RESUMO

Surface colonization competition between bacteria and host cells is one of the critical factors involved in tissue/implant integration. Current biomaterials are evaluated for their ability both of withstanding favorable responses of host tissue cells and of resisting bacterial contamination. In this work, the antibacterial ability of biocompatible Mg2+-substituted nanostructured hydroxyapatite (HA) was investigated. The densities of Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli strains were significantly decreased after culture in the presence of Mg-substituted HA materials in direct correlation with Mg2+-Ca2+ switch in the HA lattice. It was noticed that this decrease was accompanied by a minimal alteration of bacterial environments; therefore, the Mg2+-HA antibacterial effect was associated with the material surface topography and it electroactive behavior. It was observed that 2.23 wt % Mg2+-HA samples exhibited the best antibacterial performance; it decreased 2-fold the initial population of E. coli, P. aeruginosa, and S. aureus at the intermediate concentration (50 mg mL-1 of broth). Our results reinforce the potential of Mg-HA nanostructured materials to be used in antibacterial coatings for implantable devices and/or medicinal materials to prevent bone infection and to promote wound healing.


Assuntos
Osteomielite , Antibacterianos , Anti-Infecciosos , Materiais Revestidos Biocompatíveis , Durapatita , Escherichia coli , Humanos , Magnésio , Testes de Sensibilidade Microbiana , Staphylococcus aureus
18.
J Phys Chem B ; 111(28): 8045-52, 2007 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-17585796

RESUMO

In the field of bioscience, the study of the interactions between blood proteins and fluorinated materials is very important from both theoretical and applied points of view. Fluorinated materials have potential use in drug delivery, as blood substitutes, and in biotechnology. Using a combination of ultraviolet-visible (UV-vis) and ultraviolet-circular dichroism (UV-CD) spectroscopies and ion-selective electrodes, the complete interaction of sodium perfluorooctanoate (SPFO) and the most important immunoglobulin (on a quantitative basis) in human serum, immunoglobulin G (IgG), has been evaluated. The study has been focused on bulk solution. By the application of an SPFO selective electrode, it was determined that there were true specific unions between surfactant molecules and IgG structure. The experimental data were presented as Koltz and Scatchard plots and analyzed on the basis of an empirical Hill equation. The conformational changes at the bulk solution were well characterized by UV-vis and UV-CD spectroscopies. As a consequence of these changes, the protein structure was affected.


Assuntos
Caprilatos/química , Fluorocarbonos/química , Imunoglobulina G/química , Tensoativos/química , Sítios de Ligação , Dicroísmo Circular , Humanos , Imunoglobulina G/isolamento & purificação , Potenciometria , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Espectrofotometria Ultravioleta , Termodinâmica
19.
J Colloid Interface Sci ; 314(2): 659-64, 2007 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-17612553

RESUMO

The behavior of the sodium dehydrocholate (NaDHC)-sodium deoxycholate (NaDC) mixed system was studied by a battery of methods that examine effects caused by the different components of the system: monomers, micelles, and both components. The behavior of the mixed micellar system was studied by the application of Rubingh's model. The obtained results show that micellar interaction was repulsive when the aggregates were rich in NaDHC. The gradual inclusion of NaDC in micelles led to a structural transformation in the aggregates and the interaction became attractive. The bile salts' behavior in mixed monolayers at the air-solution interface was also investigated. Mixed monolayers are monotonically rich in NaDC, giving a stable and compact adsorbed layer. Results have shown that the interaction in both micelles and monolayer is not ideal and such behavior is assumed to be due to a structural factor in their hydrocarbon backbone.


Assuntos
Ácido Desidrocólico/farmacologia , Ácido Desoxicólico/farmacologia , Adsorção , Ar , Ácidos e Sais Biliares/química , Físico-Química/métodos , Ácido Desidrocólico/química , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Micelas , Modelos Moleculares , Modelos Estatísticos , Conformação Molecular
20.
ACS Appl Mater Interfaces ; 9(18): 15698-15710, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28426935

RESUMO

Ionic substitution can affect essential physicochemical properties leading to a specific biological behavior upon implantation. Therefore, it has been proposed as a tool to increase the biological efficiency of calcium phosphate based materials. In the following study, we have evaluated the contribution of an important cation in nature, Mg2+, into the structure of previously studied biocompatible and biodegradable hydroxyapatite (HA) nanorods and its subsequent effect on its chemical, morphology, and bone mimetic articulation. Mg2+-substituted HA samples were synthesized by an aqueous wet-chemical precipitation method, followed by an hydrothermal treatment involving a Mg2+ precursor that partially replace Ca2+ ions into HA crystal lattice; Mg2+ concentrations were modulated to obtain a nominal composition similar to that exists in calcified tissues. Hydrothermally synthesized Mg2+-substituted HA nanoparticles were characterized by X-ray powder diffraction, FT-NIR and EDX spectroscopies, field emission scanning and high resolution transmission electron microscopies (FE-SEM, H-TEM). Molecular modeling combining ab initio methods and power diffraction data were also performed. Results showed that Mg2+-substitution promoted the formation of calcium deficient HA (cdHA) where Mg2+ replacement is energetically favored at Ca(1) position in a limited and specific amount directing the additional Mg2+ toward the surface of the crystal. The control of Mg2+ incorporation into HA nanorods gave rise to a tailored crystallinity degree, cell parameters, morphology, surface hydration, solubility, and degradation properties in a dose-replacement dependent manner. The obtained materials show qualities that conjugated together to drive an optimal in vitro cellular viability, spreading, and proliferation confirming their biocompatibility. In addition, an improved adhesion of osteoblast was evidenced after Mg2+-Ca2+ substitution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA