Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 27(3): 419-29, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23280973

RESUMO

RATIONALE: The present study reports on the evaluation of dielectric barrier discharge microplasma ionization (DBDI) for liquid chromatography/high resolution mass spectrometry (LC/HRMS) analyses of pesticide residues in fruit and vegetables. Ionization, fragmentation, analytical performance and matrix effects displayed by LC/DBDI-MS were critically evaluated and compared with both atmospheric pressure chemical ionization (APCI) and electrospray (ESI), using a set of over 40 representative multiclass pesticides. METHODS: Sample preparation was accomplished using standard QuEChERS procedure and the identification and quantitation of the pesticides tested accomplished by means of LC/MS with a hybrid linear quadrupole ion trap (LIT)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated in full-scan positive ion mode using DBDI, APCI and ESI sources. RESULTS: The developed LC/DBDI-MS method allowed the screening of 43 pesticides in three different vegetable matrices: apple, orange and tomato. Minor matrix effects (i.e. signal suppression or enhancement ≤20%) were observed in most of the studied compounds: 95%, 70% and 81% of the studied compounds showed minor matrix effects in extracts of apple, orange and tomato, respectively. The results of the analysis of spiked orange extracts showed that the sensitivity obtained with LC/DBDI-MS is appropriate for multi-residue analysis of pesticide residues in fruit and vegetable samples. The limits of quantitation (LOQs) obtained for most of the studied pesticides were in compliance with the European Regulation 396/2005 (and subsequent updates) on food commodities (default maximum residue level of 10 µg kg(-1)). CONCLUSIONS: Comparative studies with commercial sources demonstrate the suitability of DBDI as an ionization technique for residue analysis, because of the combination of the following two advantages: (1) the use of DBDI provides minimized matrix effects compared with APCI, and (2) improved the detection - in terms of sensitivity - of selected compounds that are not easily ionized by ESI, such as parathion.


Assuntos
Espectrometria de Massas/métodos , Resíduos de Praguicidas/química , Cromatografia Líquida de Alta Pressão , Citrus sinensis/química , Frutas/química , Solanum lycopersicum/química , Malus/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Verduras/química
2.
Anal Bioanal Chem ; 405(14): 4729-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23532393

RESUMO

The present study contributes to the evaluation of dielectric barrier discharge-based ambient ionization for mass spectrometric analysis (DBDI-MS) by providing a further step towards an understanding of underlying ionization processes. This examination highlights the effect of physical discharge modes on the ionization efficiency of the DBDI source. A distinction is made between the homogeneous and filamentary discharge mode due to different plasma gases in barrier configurations. Therefore, we first report on discharge modes of DBDI by demonstrating a universally applicable method to classify the predominant modes. Then, the ionization efficiency of these two modes is evaluated by a laser desorption-DBDI-MS with different molecular analytes. Here, the laser desorption is used to deliver neutral analytes which will be ionized by the plasma jet applied as dielectric barrier discharge ionization. With a clear increase of signal intensities in the homogeneous mode in contrast to the filamentary one, the present study indicates a pronounced dependence of the ionization efficiency on the discharge mode allowing further insight into the mechanisms of the ionization process.

3.
Analyst ; 137(22): 5403-10, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23013838

RESUMO

A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant species including multiclass priority organic contaminants and residues such as pesticides, polycyclic aromatic hydrocarbons, organochlorine species, pharmaceuticals, personal care products, and drugs of abuse were tested. LC/DBDI-MS performance for this application was assessed and compared with standard LC/MS sources (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)). The used benchtop Orbitrap mass spectrometer features a 10 Hz polarity switching mode, so that both positive and negative ion mode acquisitions are possible with acquisition cycles matching the requirements of fast liquid chromatography. Both polar and nonpolar species (including those typically analyzed by GC/electron ionization-MS) can be tested in a single run using polarity switching mode. The methodology was found to be effective in detecting a wide array of organic compounds at concentration levels in the low ng L(-1) to µg kg(-1) range in wastewater and food matrices, respectively. The linearity was evaluated in an olive oil extract, obtaining good correlation coefficients in the studied range. Additionally, minor matrix effects (≤15% of signal suppression or enhancement) were observed for most of the studied analytes in this complex fatty matrix. The results obtained were compared with data from both ESI and APCI sources, obtaining a merged coverage between ESI and APCI in terms of analyte ionization and higher overall sensitivity for the proposed ion source based on the DBD principle. The use of this approach further extends the coverage of current LC/MS methods towards an even larger variety of chemical species including both polar and nonpolar (non-ESI amenable) species and may find several applications in fields such as food and environment testing or metabolomics where GC/MS and LC/MS are combined to cover as many different species as possible.


Assuntos
Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Compostos Orgânicos/análise , Espectrometria de Massas por Ionização por Electrospray , Pressão Atmosférica , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Azeite de Oliva , Óleos de Plantas/química , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA