Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuron ; 111(11): 1748-1759.e8, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37071991

RESUMO

In multiple sclerosis, an inflammatory attack results in myelin loss, which can be partially reversed by remyelination. Recent studies suggest that mature oligodendrocytes could contribute to remyelination by generating new myelin. Here, we show that in a mouse model of cortical multiple sclerosis pathology, surviving oligodendrocytes can indeed extend new proximal processes but rarely generate new myelin internodes. Furthermore, drugs that boost myelin recovery by targeting oligodendrocyte precursor cells did not enhance this alternate mode of myelin regeneration. These data indicate that the contribution of surviving oligodendrocytes to myelin recovery in the inflamed mammalian CNS is minor and inhibited by distinct remyelination brakes.


Assuntos
Esclerose Múltipla , Remielinização , Camundongos , Animais , Oligodendroglia/patologia , Bainha de Mielina/patologia , Axônios/patologia , Mamíferos
2.
Nat Commun ; 11(1): 4901, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994410

RESUMO

Myelin, rather than being a static insulator of axons, is emerging as an active participant in circuit plasticity. This requires precise regulation of oligodendrocyte numbers and myelination patterns. Here, by devising a laser ablation approach of single oligodendrocytes, followed by in vivo imaging and correlated ultrastructural reconstructions, we report that in mouse cortex demyelination as subtle as the loss of a single oligodendrocyte can trigger robust cell replacement and remyelination timed by myelin breakdown. This results in reliable reestablishment of the original myelin pattern along continuously myelinated axons, while in parallel, patchy isolated internodes emerge on previously unmyelinated axons. Therefore, in mammalian cortex, internodes along partially myelinated cortical axons are typically not reestablished, suggesting that the cues that guide patchy myelination are not preserved through cycles of de- and remyelination. In contrast, myelin sheaths forming continuous patterns show remarkable homeostatic resilience and remyelinate with single axon precision.


Assuntos
Córtex Cerebral/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/metabolismo , Córtex Cerebral/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/citologia , Remielinização
3.
Acta Neuropathol Commun ; 8(1): 207, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256847

RESUMO

Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.


Assuntos
Autoanticorpos/imunologia , Autoimunidade/imunologia , Encefalomielite Aguda Disseminada/imunologia , Esclerose Múltipla/imunologia , Glicoproteína Oligodendrócito-Mielina/imunologia , Adulto , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos Psicóticos/imunologia , Ratos , Linfócitos T/imunologia , Adulto Jovem
4.
Nat Commun ; 7: 13275, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27848954

RESUMO

Oligodendrocyte damage is a central event in the pathogenesis of the common neuroinflammatory condition, multiple sclerosis (MS). Where and how oligodendrocyte damage is initiated in MS is not completely understood. Here, we use a combination of light and electron microscopy techniques to provide a dynamic and highly resolved view of oligodendrocyte damage in neuroinflammatory lesions. We show that both in MS and in its animal model structural damage is initiated at the myelin sheaths and only later spreads to the oligodendrocyte cell body. Early myelin damage itself is characterized by the formation of local myelin out-foldings-'myelinosomes'-, which are surrounded by phagocyte processes and promoted in their formation by anti-myelin antibodies and complement. The presence of myelinosomes in actively demyelinating MS lesions suggests that oligodendrocyte damage follows a similar pattern in the human disease, where targeting demyelination by therapeutic interventions remains a major open challenge.


Assuntos
Esclerose Múltipla/patologia , Bainha de Mielina/patologia , Oligodendroglia/patologia , Animais , Anticorpos/metabolismo , Proteínas do Sistema Complemento/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/patologia , Humanos , Imageamento Tridimensional , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/ultraestrutura , Oligodendroglia/ultraestrutura , Proteínas Opsonizantes/metabolismo , Organelas/metabolismo , Organelas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA