Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 256(2): 43, 2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35842878

RESUMO

MAIN CONCLUSION: Loss of CALS7 appears to confer increased susceptibility to phytoplasma infection in Arabidopsis, altering expression of genes involved in sugar metabolism and membrane transport. Callose deposition around sieve pores, under control of callose synthase 7 (CALS7), has been interpreted as a mechanical response to limit pathogen spread in phytoplasma-infected plants. Wild-type and Atcals7ko mutants were, therefore, employed to unveil the mode of involvement of CALS7 in the plant's response to phytoplasma infection. The fresh weights of healthy and CY-(Chrysanthemum Yellows) phytoplasma-infected Arabidopsis wild type and mutant plants indicated two superimposed effects of the absence of CALS7: a partial impairment of photo-assimilate transport and a stimulated phytoplasma proliferation as illustrated by a significantly increased phytoplasma titre in Atcal7ko mutants. Further studies solely dealt with the effects of CALS7 absence on phytoplasma growth. Phytoplasma infection affected sieve-element substructure to a larger extent in mutants than in wild-type plants, which was also true for the levels of some free carbohydrates. Moreover, infection induced a similar upregulation of gene expression of enzymes involved in sucrose cleavage (AtSUS5, AtSUS6) and transmembrane transport (AtSWEET11) in mutants and wild-type plants, but an increased gene expression of carbohydrate transmembrane transporters (AtSWEET12, AtSTP13, AtSUC3) in infected mutants only. It remains still unclear how the absence of AtCALS7 leads to gene upregulation and how an increased intercellular mobility of carbohydrates and possibly effectors contributes to a higher susceptibility. It is also unclear if modified sieve-pore structures in mutants allow a better spread of phytoplasmas giving rise to higher titre.


Assuntos
Arabidopsis , Chrysanthemum , Phytoplasma , Arabidopsis/metabolismo , Chrysanthemum/genética , Phytoplasma/metabolismo , Doenças por Fitoplasmas , Plantas
2.
Molecules ; 26(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34500632

RESUMO

In the Valpolicella area (Verona, Italy) Vitis vinifera cv. Corvina is the main grape variety used to produce Amarone wine. Before starting the winemaking process, the Corvina grapes are stored in a withering (i.e., dehydrating) warehouse until about 30% of the berry weight is lost (WL). This practice is performed to concentrate the metabolites in the berry and enrich the Amarone wine in aroma and antioxidant compounds. In compliance with the guidelines and strict Amarone protocol set by the Consorzio of Amarone Valpolicella, withering must be carried out by setting the grapes in a suitable environment, either under controlled relative air humidity (RH) conditions and wind speed (WS)-no temperature modification is to be applied-or, following the traditional methods, in non-controlled environmental conditions. In general, the two processes have different dehydration kinetics due to the different conditions in terms of temperature, RH, and WS, which affect the accumulation of sugars and organic acids and the biosynthesis of secondary metabolites such as stilbenes and glycoside aroma precursors. For this study, the two grape-withering processes were carried out under controlled (C) and non-controlled (NC) conditions, and the final compositions of the Corvina dried grapes were compared also to evaluate the effects on the organoleptic characteristics of Amarone wine. The findings highlighted differences between the two processes mainly in terms of the secondary metabolites of the dried grapes, which affect the organoleptic characteristics of Amarone wine. Indeed, by the sensory evaluation, wines produced by adopting the NC process were found more harmonious, elegant, and balanced. Finally, we can state how using a traditional system, grapes were characterised by higher levels of VOCs (volatile compounds), whilst wines had a higher and appreciable complexity and finesse.


Assuntos
Vitis/química , Compostos Orgânicos Voláteis/química , Frutas/química , Glicosídeos/química , Itália , Espectrometria de Massas/métodos , Odorantes , Sensação/fisiologia , Estilbenos/química , Vinho
3.
Microorganisms ; 12(8)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39203358

RESUMO

This study examined the potential use of three bacterial strains-Paraburkholderia sp. strain CRV74, Pseudomonas sp. strain CRV21, and Acinetobacter sp. strain CRV19-as biocontrol agents of Botrytis cinerea in grapevine. These strains were selected for their ability to inhibit B. cinerea growth in vitro and used in field conditions for the control of grey mould symptoms in 'Glera' grapes. To this end, after inoculating these microorganisms onto plants sprayed with B. cinerea spores, the final yield, the physicochemical characteristics of the must, disease incidence, and the possible influence on the expression of plant-defence proteins were evaluated. Strain CRV21 resulted as being the most effective in combating grey mould (-20% of disease incidence). Although yield was not affected, significantly different values of total soluble solids content was observed. Additionally, a significant up-regulation of the genes PR-1, PR-5, ß-1,3-glucanase, and class III chitinase was observed. These findings highlight the potential application of strains with anti-botrytis activity as sustainable alternatives to chemical defence for the control of this pathogen.

4.
Foods ; 12(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37569134

RESUMO

The central objectives of this paper are to enhance the understanding of how consumers in developed economies value credence attributes and to understand their preferences for red-pulp kiwifruit. To achieve this, we utilised the choice experiment method through surveys conducted in Italy, Spain, France, and Germany, targeting kiwifruit consumers through specific questionnaires. Regarding red kiwifruit, a significant percentage of those who are already familiar with them either purchase or intend to purchase them. What is equally interesting is the high percentage of those who declared themselves to be undecided about making a purchase. Specific marketing actions can be directed towards the following two categories: converting the intention to purchase into an actual purchase and shifting the current inclination towards an intention or act of purchase, for example, by improving the knowledge about this relatively unknown fruit. This paper contributes to the market chain by assessing consumers' choice and willingness to pay for red kiwifruit, while also comparing developed economy markets.

5.
Sci Rep ; 13(1): 16449, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777544

RESUMO

Kiwifruit Vine Decline Syndrome (KVDS) is an important soil-borne disease for the Italian kiwifruit industry, causing €300,000 in economic losses in 2020 alone. So far, the organisms recognized as involved in the aetiology of KVDS mainly belong to the Oomycota. As no effective management strategies exist, a promising approach to overcoming KVDS is the use of resistant species as rootstocks or for inclusion in breeding programs. Several Actinidia genotypes showing different level of resistance to KVDS were grown in disease-promoting soils. A metabarcoding approach was set up to identify KVDS-associated oomycetes and investigate whether the main species involved may vary according to plant genotype. Our results clearly showed significant differences between the genotypes in terms of oomycetes present in both plant rhizosphere and endosphere, which were strongly correlated with the symptoms displayed. We found out that the resistance of Actinidia macrosperma to KVDS is related to its ability to shape the pathobiome, particularly as far as the endosphere is concerned. In our conditions, Phytophthora sp. was predominantly found in sensitive genotypes, whilst Globisporangium intermedium was mainly detected in asymptomatic plants, suggesting that the latter species could compete with the recruitment of Phytophthora sp. in plants with different levels of resistance, consequently, explaining the onset of symptoms and the resistance condition.


Assuntos
Actinidia , Phytophthora , Actinidia/genética , Melhoramento Vegetal , Genótipo , Phytophthora/genética , Frutas/genética , Variação Genética
6.
Front Plant Sci ; 14: 1292290, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38164251

RESUMO

This study aimed to determine whether leaf extracts from seven Eruca vesicaria subsp. sativa cultivars and their biochemically active compounds (glucosinolates and downstream-derived products) inhibit mycelia growth of three well-known pathogenic oomycetes, Phytopythium chamaehyphon, Phytopythium vexans and Phytophthora citrophthora; being the most significant in the development of Kiwifruit Vine Decline Syndrome (KVDS). Leaf extract quantity of 10, 20 and 30 mg were inoculated in Petri dish (90 mm Ø, each 22 mL of liquid medium - Potato Dextrose Agar), for in vitro bioassays. A pathogen plug was placed in the centre of each plate and the Oomycota colony perimeter was marked 5 days after inoculation. Radial colony growth was measured from 4 marks per plate 5, 10, and 15 days after inoculation, further elaborated with Image J software image analysis. Growth rates for all strains were inhibited by around 67% after 15 days. This was most pronounced when applying the highest concentration of leaf extract. By using Liquid Chromatography Mass Spectrometry (LC-MS) and Gas Chromatography Mass Spectrometry (GC-MS), fifteen glucosinolate compounds, of which glucosativin was found in the highest quantity, were identified. Concentrations of hydrolysis products produced by leaves (erucin and sativin) were also investigated, and were significantly associated with colony radial growth, especially towards Pp. chamaehyphon and Pp. vexans. Three downstream products of glucosinolates (two pure isothiocyanates, AITC and PEITC; and one indole I3C; all commonly present in Brassicaceae) were also tested, and a statistically significant inhibition of growth was observed at the highest concentration (0.6 µL).

7.
Front Microbiol ; 14: 1030414, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819061

RESUMO

The rough endoplasmic reticulum (r-ER) is of paramount importance for adaptive responses to biotic stresses due to an increased demand for de novo synthesis of immunity-related proteins and signaling components. In nucleate cells, disturbance of r-ER integrity and functionality leads to the "unfolded protein response" (UPR), which is an important component of innate plant immune signalling. In contrast to an abundance of reports on r-ER responses to biotic challenges, sieve-element endoplasmic reticulum (SE-ER) responses to phytoplasma infection have not been investigated. We found that morphological SE-ER changes, associated with phytoplasma infection, are accompanied by differential expression of genes encoding proteins involved in shaping and anchoring the reticulum. Phytoplasma infection also triggers an increased release of bZIP signals from the (SE-ER)/r-ER and consequent differential expression of UPR-related genes. The modified expression patterns seem to reflect a trade-off between survival of host cells, needed for the phytoplasmic biotrophic lifestyle, and phytoplasmas. Specialized plasmodesmata between sieve element and companion cell may provide a corridor for transfer of phytoplasma effectors inducing UPR-related gene expression in companion cells.

8.
Plant Physiol Biochem ; 188: 60-69, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35987022

RESUMO

Biostimulants are organic compounds which can influence the biochemical activity of the whole plant. Lately, great attention has been focused on the possibility of using these stimulants in the viticulture sector. Due to this, the aim of this work was to investigate the foliar application of a biostimulant made by Fabaceae tissue, rich in amino acids and peptides along with the high presence of natural triacontanol (C30H62O) (>6 mg kg-1), previously reported in many crops as chemicals able to stimulate different yield components, the technological composition of musts still having an effect on some of the microbial population of different fruits/crops. Hence, this research was conducted during the growing seasons 2020 and 2021 in a commercial vineyard of the 'Ribolla Gialla' grapevine (Vitis vinifera, L.), in the Friuli Venezia Giulia Region (North-Eastern Italy), in order to understand the effect on this woody perennial crop not yet investigated. After a two-year-study, a physiological response occurred, as ripening and veraision were brought forward in the treated plants as well as the harvest time, having higher enological parameters (sugars, total titrable acidity and citric acid content) than the non-treated at every stage. Thus, grapes in the treated plants reached a full technological maturity earlier than the non-treated, in both study years. There was a positive effect on must microbial ecology important for winemaking, hence, the biostimulant have promoted the growth of the microbial community on berry skin translating into what found in the must.


Assuntos
Vitis , Vinho , Produtos Agrícolas , Álcoois Graxos , Frutas/metabolismo , Vitis/metabolismo , Vinho/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA