Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2219491120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37851678

RESUMO

In conventional superconductors, electron-phonon coupling plays a dominant role in generating superconductivity. In high-temperature cuprate superconductors, the existence of electron coupling with phonons and other boson modes and its role in producing high-temperature superconductivity remain unclear. The evidence of electron-boson coupling mainly comes from angle-resolved photoemission (ARPES) observations of [Formula: see text]70-meV nodal dispersion kink and [Formula: see text]40-meV antinodal kink. However, the reported results are sporadic and the nature of the involved bosons is still under debate. Here we report findings of ubiquitous two coexisting electron-mode couplings in cuprate superconductors. By taking ultrahigh-resolution laser-based ARPES measurements, we found that the electrons are coupled simultaneously with two sharp modes at [Formula: see text]70meV and [Formula: see text]40meV in different superconductors with different dopings, over the entire momentum space and at different temperatures above and below the superconducting transition temperature. These observations favor phonons as the origin of the modes coupled with electrons and the observed electron-mode couplings are unusual because the associated energy scales do not exhibit an obvious energy shift across the superconducting transition. We further find that the well-known "peak-dip-hump" structure, which has long been considered a hallmark of superconductivity, is also omnipresent and consists of "peak-double dip-double hump" finer structures that originate from electron coupling with two sharp modes. These results provide a unified picture for the [Formula: see text]70-meV and [Formula: see text]40-meV energy scales and their evolutions with momentum, doping and temperature. They provide key information to understand the origin of these energy scales and their role in generating anomalous normal state and high-temperature superconductivity.

2.
Nat Commun ; 15(1): 4373, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782908

RESUMO

The latest discovery of high temperature superconductivity near 80 K in La3Ni2O7 under high pressure has attracted much attention. Many proposals are put forth to understand the origin of superconductivity. The determination of electronic structures is a prerequisite to establish theories to understand superconductivity in nickelates but is still lacking. Here we report our direct measurement of the electronic structures of La3Ni2O7 by high-resolution angle-resolved photoemission spectroscopy. The Fermi surface and band structures of La3Ni2O7 are observed and compared with the band structure calculations. Strong electron correlations are revealed which are orbital- and momentum-dependent. A flat band is formed from the Ni-3d z 2 orbitals around the zone corner which is ~ 50 meV below the Fermi level and exhibits the strongest electron correlation. In many theoretical proposals, this band is expected to play the dominant role in generating superconductivity in La3Ni2O7. Our observations provide key experimental information to understand the electronic structure and origin of high temperature superconductivity in La3Ni2O7.

3.
Nat Commun ; 14(1): 4089, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429852

RESUMO

Kagome lattices of various transition metals are versatile platforms for achieving anomalous Hall effects, unconventional charge-density wave orders and quantum spin liquid phenomena due to the strong correlations, spin-orbit coupling and/or magnetic interactions involved in such a lattice. Here, we use laser-based angle-resolved photoemission spectroscopy in combination with density functional theory calculations to investigate the electronic structure of the newly discovered kagome superconductor CsTi3Bi5, which is isostructural to the AV3Sb5 (A = K, Rb or Cs) kagome superconductor family and possesses a two-dimensional kagome network of titanium. We directly observe a striking flat band derived from the local destructive interference of Bloch wave functions within the kagome lattice. In agreement with calculations, we identify type-II and type-III Dirac nodal lines and their momentum distribution in CsTi3Bi5 from the measured electronic structures. In addition, around the Brillouin zone centre, [Formula: see text] nontrivial topological surface states are also observed due to band inversion mediated by strong spin-orbit coupling.

4.
Adv Sci (Weinh) ; 9(32): e2204247, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104244

RESUMO

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2 /Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2 , MoSe2 ) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions.

5.
Sci Bull (Beijing) ; 66(18): 1839-1848, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654393

RESUMO

The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors. However, even for the most extensively studied optimally-doped (Ba0.6K0.4)Fe2As2, there remain outstanding controversies on its electronic structure and superconducting gap structure. Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy (ARPES) measurements on the optimally-doped (Ba0.6K0.4)Fe2As2 superconductor using both Helium lamp and laser light sources. Our results indicate the "flat band" feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center. We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state. Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly. Around the zone corner, we observe a tiny electron-like band and an M-shaped band simultaneously in both the normal and superconducting states. The obtained gap size for the bands around the zone corner (~5.5 meV) is significantly smaller than all the previous ARPES measurements. Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped (Ba0.6K0.4)Fe2As2. They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA