Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Transl Med ; 17(1): 365, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31711507

RESUMO

BACKGROUND: There continues to be a great need for better biomarkers and host-directed treatment targets for community-acquired pneumonia (CAP). Alterations in phospholipid metabolism may constitute a source of small molecule biomarkers for acute infections including CAP. Evidence from animal models of pulmonary infections and sepsis suggests that inhibiting acid sphingomyelinase (which releases ceramides from sphingomyelins) may reduce end-organ damage. METHODS: We measured concentrations of 105 phospholipids, 40 acylcarnitines, and 4 ceramides, as well as acid sphingomyelinase activity, in plasma from patients with CAP (n = 29, sampled on admission and 4 subsequent time points), chronic obstructive pulmonary disease exacerbation with infection (COPD, n = 13) as a clinically important disease control, and 33 age- and sex-matched controls. RESULTS: Phospholipid concentrations were greatly decreased in CAP and normalized along clinical improvement. Greatest changes were seen in phosphatidylcholines, followed by lysophosphatidylcholines, sphingomyelins and ceramides (three of which were upregulated), and were least in acylcarnitines. Changes in COPD were less pronounced, but also differed qualitatively, e.g. by increases in selected sphingomyelins. We identified highly accurate biomarkers for CAP (AUC ≤ 0.97) and COPD (AUC ≤ 0.93) vs. Controls, and moderately accurate biomarkers for CAP vs. COPD (AUC ≤ 0.83), all of which were phospholipids. Phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins were also markedly decreased in S. aureus-infected human A549 and differentiated THP1 cells. Correlations with C-reactive protein and procalcitonin were predominantly negative but only of mild-to-moderate extent, suggesting that these markers reflect more than merely inflammation. Consistent with the increased ceramide concentrations, increased acid sphingomyelinase activity accurately distinguished CAP (fold change = 2.8, AUC = 0.94) and COPD (1.75, 0.88) from Controls and normalized with clinical resolution. CONCLUSIONS: The results underscore the high potential of plasma phospholipids as biomarkers for CAP, begin to reveal differences in lipid dysregulation between CAP and infection-associated COPD exacerbation, and suggest that the decreases in plasma concentrations are at least partially determined by changes in host target cells. Furthermore, they provide validation in clinical blood samples of acid sphingomyelinase as a potential treatment target to improve clinical outcome of CAP.


Assuntos
Fosfolipídeos/sangue , Pneumonia/sangue , Esfingomielina Fosfodiesterase/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Estudos de Casos e Controles , Ceramidas/sangue , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/diagnóstico , Feminino , Humanos , Mediadores da Inflamação/sangue , Lipidômica , Masculino , Pessoa de Meia-Idade , Pneumonia/diagnóstico , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Pesquisa Translacional Biomédica , Adulto Jovem
2.
Cells ; 11(15)2022 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-35892580

RESUMO

Amino acids and their metabolites are key regulators of immune responses, and plasma levels may change profoundly during acute disease states. Using targeted metabolomics, we evaluated concentration changes in plasma amino acids and related metabolites in community-acquired pneumonia (CAP, n = 29; compared against healthy controls, n = 33) from presentation to hospital through convalescence. We further aimed to identify biomarkers for acute CAP vs. the clinically potentially similar infection-triggered COPD exacerbation (n = 13). Amino acid metabolism was globally dysregulated in both CAP and COPD. Levels of most amino acids were markedly depressed in acute CAP, and total amino acid concentrations on admission were an accurate biomarker for the differentiation from COPD (AUC = 0.93), as were reduced asparagine and threonine levels (both AUC = 0.92). Reduced tryptophan and histidine levels constituted the most accurate biomarkers for acute CAP vs. controls (AUC = 0.96, 0.94). Only kynurenine, symmetric dimethyl arginine, and phenylalanine levels were increased in acute CAP, and the kynurenine/tryptophan ratio correlated best with clinical recovery and resolution of inflammation. Several amino acids did not reach normal levels by the 6-week follow-up. Glutamate levels were reduced on admission but rose during convalescence to 1.7-fold above levels measured in healthy control. Our data suggest that dysregulated amino acid metabolism in CAP partially persists through clinical recovery and that amino acid metabolism constitutes a source of promising biomarkers for CAP. In particular, total amino acids, asparagine, and threonine may constitute plasma biomarker candidates for the differentiation between CAP and infection-triggered COPD exacerbation and, perhaps, the detection of pneumonia in COPD.


Assuntos
Infecções Comunitárias Adquiridas , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Asparagina , Biomarcadores , Infecções Comunitárias Adquiridas/diagnóstico , Convalescença , Humanos , Cinurenina , Treonina , Triptofano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA