Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Anal Chem ; 90(5): 3424-3429, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29457722

RESUMO

A new method for arsenic detection by optical emission spectrometry (OES) is presented. Arsine (AsH3) is generated from liquid solutions by means of hydride generation (HG) and introduced into a capillary dielectric barrier discharge (DBD) where it is atomized and excited. A great challenge in OES is the reduction of the recorded background signal, because it negatively affects the limit of detection (LOD). In conventional DBD/OES methods, the signal intensity of the line of interest, in this case arsenic, is integrated over a long time scale. However, due to the pulsed character of the plasma, the plasma on-time is only a small fraction of the integration time. Therefore, a high amount of noise is added to the actual signal in each discharge cycle. To circumvent this, in the present study the emitted light from the DBD is collected by a fast gated iCCD camera, which is mounted on a modified monochromator. The experimental arrangement enables the recording of the emission signal of arsenic in the form of a monochromatic 2D-resolved picture. The temporal resolution of the iCCD camera in the nanosecond range provides the information at which point in time and how long arsenic is excited in the discharge. With use of this knowledge, it is possible to integrate only the arsenic emission by temporally isolating the signal from the background. With the presented method, the LOD for arsenic could be determined to 93 pg mL-1 with a calibration curve linear over 4 orders of magnitude. As a consequence, the developed experimental approach has a potential for both mechanistic studies of arsine atomization and excitation in DBD plasmas as well as routine applications, in which arsenic determination at ultratrace levels is required.

2.
Anal Chem ; 90(5): 3537-3542, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29461807

RESUMO

Dielectric barrier discharges (DBDs) have been used as soft ionization sources (DBDI) for organic mass spectrometry (DBDI-MS) for approximately ten years. Helium-based DBDI is often used because of its good ionization efficiency, low ignition voltage, and homogeneous plasma conditions. Argon needs much higher ignition voltages than helium when the same discharge geometry is used. A filamentary plasma, which is not suitable for soft ionization, may be produced instead of a homogeneous plasma. This difference results in N2, present in helium and argon as an impurity, being Penning-ionized by helium but not by metastable argon atoms. In this study, a mixture of argon and propane (C3H8) was used as an ignition aid to decrease the ignition and working voltages, because propane can be Penning-ionized by argon metastables. This approach leads to homogeneous argon-based DBDI. Furthermore, operating DBDI in an open environment assumes that many uncharged analyte molecules do not interact with the reactant ions. To overcome this disadvantage, we present a novel approach, where the analyte is introduced in an enclosed system through the discharge capillary itself. This nonambient DBDI-MS arrangement is presented and characterized and could advance the novel connection of DBDI with analytical separation techniques such as gas chromatography (GC) and high-pressure liquid chromatography (HPLC) in the near future.

3.
Anal Chem ; 88(9): 4701-5, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27032869

RESUMO

A capillary He dielectric barrier discharge was investigated with respect to its performance as a soft or dissociative ionization source. Spatiotemporal measurements of the plasma emission showed that in one voltage duty cycle the plasma evolved from a soft to dissociative ionization source. At the earliest time, the soft plasma was generated between the electrodes as well as outside the capillary forming the plasma jet. It was characterized by significant radiation arising only from He and N2(+), which are known to be important in the process of the soft ionization of the analyte. Later in time, the plasma capable of dissociating molecules develops. It is characterized by appreciable radiation from analyte dissociation products and is restricted to the interelectrode region in the capillary. Thus, for the soft ionization purposes, it is feasible to introduce the analyte exclusively in the plasma jet. For elemental analysis, the interelectrode plasma is appropriate.

4.
Anal Bioanal Chem ; 407(26): 7973-81, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26297466

RESUMO

Helium capillary dielectric barrier discharge driven by the square wave-shaped high voltage was investigated spatially and temporally by means of optical emission spectroscopy. The finding of the previous investigation conducted with the sinusoidal-like high voltage was confirmed, i.e., the plasma in the jet and the plasma in the capillary constitute two temporally separated events. The plasma in the jet occurs prior to the discharge in the capillary and exists only during the positive half period of the applied high voltage. The time delay of the capillary discharge with respect to the discharge in the jet depended on the high voltage, and it was between 2.4 and 8.4 µs for the voltage amplitude change in the range from 1.96 to 2.31 kV, respectively. It was found that, compared to sinusoidal-like voltage, application of the square wave high voltage results with stronger (~6 times) He line emission in the jet, which makes the latter more favorable for efficient soft ionization. The use of the square wave high voltage enabled comparison of the currents (~1 mA) flowing in the capillary during the positive and negative high voltage periods, which yielded the estimation for the charge dissipated in the atmosphere ((4 ± 20 %) × 10(-11) C) through the plasma jet.

5.
Anal Bioanal Chem ; 407(22): 6689-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26077750

RESUMO

A helium capillary dielectric barrier discharge was investigated by means of time-resolved optical emission spectroscopy with the aim of elucidating the process of the formation of the plasma jet. The helium emission line at 706 nm was utilized to monitor spatial and temporal propagation of the excitation of helium atoms. The discharge was sustained with quasi-sinusoidal high voltage, and the temporal evolution of the helium atomic emission was measured simultaneously with the discharge current. The spatial development of the plasma was investigated along the discharge axis in the whole region, which covers the positions in the capillary between the electrodes as well as the plasma jet outside the capillary. The high voltage electrode was placed 2 mm from the capillary orifice, and the distance between the ground and high voltage electrode was 10 mm. The complete spatiotemporal grid of the development of the helium excitation has shown that during the positive half-period of the applied voltage, two independent plasmas, separated in time, are formed. First, the early plasma that constitutes the plasma jet is formed, while the discharge in the capillary follows subsequently. In the early plasma, the helium atom excitation propagation starts in the vicinity of the high voltage electrode and departs from the capillary towards the ground electrode as well as several millimeters outside of the capillary in the form of the plasma jet. After relatively slow propagation of the early plasma in the capillary and the jet, the second plasma starts between the electrodes. During the negative voltage period, only the plasma in the capillary between the electrodes occurs.

6.
Anal Chem ; 86(12): 5822-8, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24831065

RESUMO

The liquid electrode dielectric barrier discharge (LE-DBD) is a miniaturized atmospheric pressure plasma as emission excitation source for elemental determination with pulsed behavior. Metals dissolved in liquids are detectable in flow systems with low flow rates of 20 µL min(-1) by means of optical emission spectrometry using a simple portable spectrometer. Time-resolved determination of the hydrogen excitation temperature Tαß indicates that the LE-DBD does not reach a stable state during a burning phase, whereat the maximum and minimum Tαß is independent of the flow rate. Adding dissolved metals to the liquid electrode does not influence the minimum Tαß at the end of a burning phase. With the help of measured doubly charged lanthanum lines and spatially resolved measurements, the mechanism of the liquid transfer into the plasma will be clarified. Emissions from metal oxides indicate a thermal evaporation transfer mechanism, but only an additional electrospray-like transfer mechanism can explain the observed La III emissions and nonhomogeneous spatial distribution of exited species. The reaction pathways for electrosprayed hydrated metal ions are discussed for triply and doubly charged ions. The analytical performance is evaluated for 23 elements from the categories of alkali, alkaline earth, transition, and poor metals. The achieved detection limits are between 0.016 mg L(-1) for Li and 41 mg L(-1) for Bi.

7.
Anal Chem ; 85(6): 3174-82, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23419061

RESUMO

In this work, the combined use of desorption by a continuous wave near-infrared diode laser and ionization by a dielectric barrier discharge-based probe (laser desorption dielectric barrier discharge ionization mass spectrometry (LD-DBDI-MS)) is presented as an ambient ionization method for the mass spectrometric detection of nonvolatile chemicals on surfaces. A separation of desorption and ionization processes could be verified. The use of the diode laser is motivated by its low cost, ease of use, and small size. To achieve an efficient desorption, the glass substrates are coated at the back side with a black point (target point, where the sample is deposited) in order to absorb the energy offered by the diode laser radiation. Subsequent ionization is accomplished by a helium plasmajet generated in the dielectric barrier discharge source. Examples on the application of this approach are shown in both positive and negative ionization modes. A wide variety of multiclass species with low vapor pressure were tested including pesticides, pharmaceuticals and explosives (reserpine, roxithromycin, propazine, prochloraz, spinosad, ampicillin, dicloxacillin, enrofloxacin, tetracycline, oxytetracycline, erythromycin, spinosad, cyclo-1,3,5,7-tetramethylene tetranitrate (HMX), and cyclo-1,3,5-trimethylene trinitramine (RDX)). A comparative evaluation revealed that the use of the laser is advantageous, compared to just heating the substrate surface.


Assuntos
Substâncias Explosivas/análise , Lasers Semicondutores , Praguicidas/análise , Preparações Farmacêuticas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos
8.
Rapid Commun Mass Spectrom ; 27(3): 419-29, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23280973

RESUMO

RATIONALE: The present study reports on the evaluation of dielectric barrier discharge microplasma ionization (DBDI) for liquid chromatography/high resolution mass spectrometry (LC/HRMS) analyses of pesticide residues in fruit and vegetables. Ionization, fragmentation, analytical performance and matrix effects displayed by LC/DBDI-MS were critically evaluated and compared with both atmospheric pressure chemical ionization (APCI) and electrospray (ESI), using a set of over 40 representative multiclass pesticides. METHODS: Sample preparation was accomplished using standard QuEChERS procedure and the identification and quantitation of the pesticides tested accomplished by means of LC/MS with a hybrid linear quadrupole ion trap (LIT)-Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated in full-scan positive ion mode using DBDI, APCI and ESI sources. RESULTS: The developed LC/DBDI-MS method allowed the screening of 43 pesticides in three different vegetable matrices: apple, orange and tomato. Minor matrix effects (i.e. signal suppression or enhancement ≤20%) were observed in most of the studied compounds: 95%, 70% and 81% of the studied compounds showed minor matrix effects in extracts of apple, orange and tomato, respectively. The results of the analysis of spiked orange extracts showed that the sensitivity obtained with LC/DBDI-MS is appropriate for multi-residue analysis of pesticide residues in fruit and vegetable samples. The limits of quantitation (LOQs) obtained for most of the studied pesticides were in compliance with the European Regulation 396/2005 (and subsequent updates) on food commodities (default maximum residue level of 10 µg kg(-1)). CONCLUSIONS: Comparative studies with commercial sources demonstrate the suitability of DBDI as an ionization technique for residue analysis, because of the combination of the following two advantages: (1) the use of DBDI provides minimized matrix effects compared with APCI, and (2) improved the detection - in terms of sensitivity - of selected compounds that are not easily ionized by ESI, such as parathion.


Assuntos
Espectrometria de Massas/métodos , Resíduos de Praguicidas/química , Cromatografia Líquida de Alta Pressão , Citrus sinensis/química , Frutas/química , Solanum lycopersicum/química , Malus/química , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Verduras/química
9.
Analyst ; 137(22): 5403-10, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23013838

RESUMO

A Dielectric Barrier Discharge Ionization (DBDI) LC/MS interface is based on the use of a low-temperature helium plasma, which features the possibility of simultaneous ionization of species with a wide variety of physicochemical properties. In this work, the performance of LC/DBDI-MS for trace analysis of highly relevant species in food and environment has been examined. Over 75 relevant species including multiclass priority organic contaminants and residues such as pesticides, polycyclic aromatic hydrocarbons, organochlorine species, pharmaceuticals, personal care products, and drugs of abuse were tested. LC/DBDI-MS performance for this application was assessed and compared with standard LC/MS sources (electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI)). The used benchtop Orbitrap mass spectrometer features a 10 Hz polarity switching mode, so that both positive and negative ion mode acquisitions are possible with acquisition cycles matching the requirements of fast liquid chromatography. Both polar and nonpolar species (including those typically analyzed by GC/electron ionization-MS) can be tested in a single run using polarity switching mode. The methodology was found to be effective in detecting a wide array of organic compounds at concentration levels in the low ng L(-1) to µg kg(-1) range in wastewater and food matrices, respectively. The linearity was evaluated in an olive oil extract, obtaining good correlation coefficients in the studied range. Additionally, minor matrix effects (≤15% of signal suppression or enhancement) were observed for most of the studied analytes in this complex fatty matrix. The results obtained were compared with data from both ESI and APCI sources, obtaining a merged coverage between ESI and APCI in terms of analyte ionization and higher overall sensitivity for the proposed ion source based on the DBD principle. The use of this approach further extends the coverage of current LC/MS methods towards an even larger variety of chemical species including both polar and nonpolar (non-ESI amenable) species and may find several applications in fields such as food and environment testing or metabolomics where GC/MS and LC/MS are combined to cover as many different species as possible.


Assuntos
Cromatografia Líquida de Alta Pressão , Contaminação de Alimentos/análise , Compostos Orgânicos/análise , Espectrometria de Massas por Ionização por Electrospray , Pressão Atmosférica , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Azeite de Oliva , Óleos de Plantas/química , Águas Residuárias/análise
10.
Anal Bioanal Chem ; 397(7): 2917-22, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20512563

RESUMO

In this study a simple micro-tube-based system for analysis of metal-containing liquids is introduced and its analytical performance is evaluated. It is based on a miniaturised dielectric barrier discharge driven at atmospheric pressure. The emission lines of various elements are observed. The system is developed for quantitative measurements and the limits of detection are determined. Because of very low flow rates of just microL min(-1) the approach requires extremely low sample volumes.

11.
Anal Chem ; 81(24): 10239-45, 2009 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19911793

RESUMO

An atmospheric pressure microplasma ionization source based on a dielectric barrier discharge with a helium plasma cone outside the electrode region has been developed for liquid chromatography/mass spectrometry (LC/MS). For this purpose, the plasma was realized in a commercial atmospheric pressure ionization source. Dielectric barrier discharge ionization (DBDI) was compared to conventional electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photoionization (APPI) in the positive ionization mode. Therefore, a heterogeneous compound library was investigated that covered polar compounds such as amino acids, water-soluble vitamins, and nonpolar compounds like polycyclic aromatic hydrocarbons and functionalized hydrocarbons. It turned out that DBDI can be regarded as a soft ionization technique characterized by only minor fragmentation similar to APCI. Mainly protonated molecules were detected. Additionally, molecular ions were observed for polycyclic aromatic hydrocarbons and derivatives thereof. During DBDI, adduct formation with acetonitrile occurred. For aromatic compounds, addition of one to four oxygen atoms and to a smaller extend one nitrogen and oxygen was observed which delivered insight into the complexity of the ionization processes. In general, compounds covering a wider range of polarities can be ionized by DBDI than by ESI. Furthermore, limits of detection compared to APCI are in most cases equal or even better.


Assuntos
Aminoácidos/análise , Hidrocarbonetos/análise , Vitaminas/análise , Pressão Atmosférica , Cromatografia Líquida de Alta Pressão , Eletrodos , Hélio/química , Espectrometria de Massas
12.
Anal Bioanal Chem ; 395(3): 601-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19449153

RESUMO

In this paper we describe plasma stencilling techniques for patterning 10 mammalian cell lines on hydrophobic and cell repellent poly(dimethylsiloxane) (PDMS), methylated glass and bacterial grade polystyrene surfaces. An air plasma produced with a Tesla generator operating at atmospheric pressure was used with microengineered stencils for patterned surface oxidation, selectively transforming the surface to a hydrophilic state to enable cell adhesion and growth. Plasma stencilling obviates the need for directly patterning cell adhesion molecules. Instead, during cell culture, adhesion proteins from the media assemble in a bioactive form on the hydrophilic regions. Critically, the removal of protein patterning prior to cell culture provides the option to also use PDMS-PDMS plasma bonding to incorporate cell patterns within microfluidic systems. Linear patterns were generated using PDMS microchannel stencils, and polyimide stencils with through holes were used for the production of cellular arrays. For the production of smaller cellular arrays, a novel microcapillary-based dielectric barrier discharge system was developed. A numerical method to characterise the cell patterns is also introduced and was used to demonstrate that plasma stencilling is highly effective, with complete patterns confined during long term cell culture (>10 days). In summary, plasma stencilling is simple, rapid, inexpensive, reproducible and a potentially universal cell line patterning capability.


Assuntos
Dimetilpolisiloxanos/química , Vidro/química , Técnicas Analíticas Microfluídicas/métodos , Poliestirenos/química , Técnicas de Cultura de Tecidos/métodos , Animais , Materiais Biocompatíveis/química , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Epiteliais/citologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metilação , Técnicas Analíticas Microfluídicas/instrumentação , Propriedades de Superfície , Técnicas de Cultura de Tecidos/instrumentação
13.
Anal Bioanal Chem ; 391(7): 2609-15, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18500635

RESUMO

Ion mobility spectrometry is an analytical method for identification and quantification of gas-phase analytes in the ppb(v)-ppt(v) range. Traditional ionisation methods suffer from low sensitivity (UV light), lack of long-term stability (partial discharge), or legal restrictions when radioactive sources are used. A miniaturised helium plasma was applied as ionisation source in an ion mobility spectrometer (IMS). Experiments were carried out to compare plasma IMS with beta-radiation IMS. It could be demonstrated that the plasma IMS is characterised by higher sensitivity and selectivity than beta-radiation ionisation. Plasma IMS is approximately 100 times more sensitive than the beta-radiation IMS. Furthermore, variable sensitivity can be achieved by variation of the helium flow and the electric field of the plasma, and variable selectivity can be achieved by changing the electric field of the IMS. The experimental arrangement, optimisation of relevant conditions, and a typical application are presented in detail.

14.
Lab Chip ; 7(8): 981-3, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17653338

RESUMO

Hydrophilic patterns were directly written on a hydrophobic glass substrate with a microplasma jet and used for surface-directed capillary flow operations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA