Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Int J Mol Sci ; 22(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799604

RESUMO

Prostate cancer (PCa) is the second leading cause of cancer-related deaths in men in Western countries, and there is still an urgent need for a better understanding of PCa progression to inspire new treatment strategies. Skp2 is a substrate-recruiting component of the E3 ubiquitin ligase complex, whose activity is regulated through neddylation. Slug is a transcriptional repressor involved in the epithelial-to-mesenchymal transition, which may contribute to therapy resistance. Although Skp2 has previously been associated with a mesenchymal phenotype and prostate cancer progression, the relationship with Slug deserves further elucidation. We have previously shown that a high Gleason score (≥8) is associated with higher Skp2 and lower E-cadherin expression. In this study, significantly increased expression of Skp2, AR, and Slug, along with E-cadherin downregulation, was observed in primary prostate cancer in patients who already had lymph node metastases. Skp2 was slightly correlated with Slug and AR in the whole cohort (Rs 0.32 and 0.37, respectively), which was enhanced for both proteins in patients with high Gleason scores (Rs 0.56 and 0.53, respectively) and, in the case of Slug, also in patients with metastasis to lymph nodes (Rs 0.56). Coexpression of Skp2 and Slug was confirmed in prostate cancer tissues by multiplex immunohistochemistry and confocal microscopy. The same relationship between these two proteins was observed in three sets of prostate epithelial cell lines (PC3, DU145, and E2) and their mesenchymal counterparts. Chemical inhibition of Skp2, but not RNA interference, modestly decreased Slug protein in PC3 and its docetaxel-resistant subline PC3 DR12. Importantly, chemical inhibition of Skp2 by MLN4924 upregulated p27 and decreased Slug expression in PC3, PC3 DR12, and LAPC4 cells. Novel treatment strategies targeting Skp2 and Slug by the neddylation blockade may be promising in advanced prostate cancer, as recently documented for other aggressive solid tumors.


Assuntos
Proteína NEDD8/genética , Neoplasias da Próstata/genética , Processamento de Proteína Pós-Traducional , Proteínas Quinases Associadas a Fase S/genética , Fatores de Transcrição da Família Snail/genética , Antígenos CD/genética , Antígenos CD/metabolismo , Antineoplásicos/farmacologia , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Ciclopentanos/farmacologia , Docetaxel/farmacologia , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Linfática , Masculino , Proteína NEDD8/metabolismo , Gradação de Tumores , Células PC-3 , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Pirimidinas/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Proteínas Quinases Associadas a Fase S/antagonistas & inibidores , Proteínas Quinases Associadas a Fase S/metabolismo , Fatores de Transcrição da Família Snail/metabolismo
2.
Stem Cell Res ; 46: 101844, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32590255

RESUMO

Deciphering the properties of adult stem cells is crucial for understanding of their role in healthy tissue and in cancer progression as well. Both stem cells and cancer stem cells have shown association with epithelial-to-mesenchymal transition (EMT) in various tissue types. Aiming to investigate the epithelial and mesenchymal phenotypic traits in adult mouse prostate, we sorted subpopulations of basal prostate stem cells (mPSCs) and assessed the expression levels of EMT regulators and markers with custom-designed gene expression array. The population of mPSCs defined by a Lin-/Sca-1+CD49fhi/Trop-2+ (LSC Trop-2+) surface phenotype was enriched in mesenchymal markers, especially EMT master regulator Slug, encoded by the Snai2 gene. To further dissect the role of Slug in mPSCs, we used transgenic Snai2tm1.1Wbg reporter mouse strain. Using this model, we confirmed the presence of mesenchymal traits and increase of organoid forming capacity in Slug+ population of mPSCs. The Slug+-derived organoids comprised all prostate epithelial cell types - basal, luminal, and neuroendocrine. Collectively, these data uncover the important role of Slug expression in the physiology of mouse prostate stem cells.


Assuntos
Transição Epitelial-Mesenquimal , Próstata , Animais , Linhagem Celular Tumoral , Movimento Celular , Células Epiteliais , Masculino , Camundongos , Fatores de Transcrição da Família Snail/genética
3.
Mol Oncol ; 10(6): 879-94, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26987799

RESUMO

The DNA damage checkpoints provide an anti-cancer barrier in diverse tumour types, however this concept has remained unexplored in prostate cancer (CaP). Furthermore, targeting DNA repair defects by PARP1 inhibitors (PARPi) as a cancer treatment strategy is emerging yet requires suitable predictive biomarkers. To address these issues, we performed immunohistochemical analysis of multiple markers of DNA damage signalling, oxidative stress, DNA repair and cell cycle control pathways during progression of human prostate disease from benign hyperplasia, through intraepithelial neoplasia to CaP, complemented by genetic analyses of TMPRSS2-ERG rearrangement and NQO1, an anti-oxidant factor and p53 protector. The DNA damage checkpoint barrier (γH2AX, pATM, p53) mechanism was activated during CaP tumorigenesis, albeit less and with delayed culmination compared to other cancers, possibly reflecting lower replication stress (slow proliferation despite cases of Rb loss and cyclin D1 overexpression) and progressive loss of ATM activator NKX3.1. Oxidative stress (8-oxoguanine lesions) and NQO1 increased during disease progression. NQO1 genotypes of 390 men did not indicate predisposition to CaP, yet loss of NQO1 in CaP suggested potential progression-opposing tumour suppressor role. TMPRSS2-ERG rearrangement and PTEN loss, events sensitizing to PARPi, occurred frequently along with heterogeneous loss of DNA repair factors 53BP1, JMJD1C and Rev7 (all studied here for the first time in CaP) whose defects may cause resistance to PARPi. Overall, our results reveal an unorthodox DNA damage checkpoint barrier scenario in CaP tumorigenesis, and provide novel insights into oxidative stress and DNA repair, with implications for biomarker guidance of future targeted therapy of CaP.


Assuntos
Dano ao DNA , Estresse Oxidativo , Próstata/patologia , Neoplasias da Próstata/patologia , Idoso , Idoso de 80 Anos ou mais , Reparo do DNA , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , NAD(P)H Desidrogenase (Quinona)/análise , NAD(P)H Desidrogenase (Quinona)/genética , Proteínas de Fusão Oncogênica/análise , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/análise , PTEN Fosfo-Hidrolase/genética , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA