Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33509925

RESUMO

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Assuntos
Arabidopsis/citologia , Arabidopsis/imunologia , Parede Celular/metabolismo , Resistência à Doença , Doenças das Plantas/imunologia , Arabidopsis/genética , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Mutação/genética , Fenótipo , Doenças das Plantas/genética , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Plant J ; 103(4): 1372-1385, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32390169

RESUMO

Cell wall thickness is widely recognized as one of the main determinants of mesophyll conductance to CO2 (gm ). However, little is known about the components that regulate effective CO2 diffusivity in the cell wall (i.e. the ratio between actual porosity and tortuosity, the other two biophysical diffusion properties of cell walls). The aim of this study was to assess, at the interspecific level, potential relationships between cell wall composition, cell wall thickness (Tcw ) and gm . Gymnosperms constitute an ideal group to deepen these relationships, as they present, on average, the thickest cell walls within spermatophytes. We characterized the foliar gas exchange, the morphoanatomical traits related with gm , the leaf fraction constituted by cell walls and three main components of primary cell walls (hemicelluloses, cellulose and pectins) in seven gymnosperm species. We found that, although the relatively low gm of gymnosperms was mainly determined by their elevated Tcw , gm was also strongly correlated with cell wall composition, which presumably sets the final effective CO2 diffusivity. The data presented here suggest that (i) differences in gm are strongly correlated to the pectins to hemicelluloses and cellulose ratio in gymnosperms, and (ii) variations in cell wall composition may modify effective CO2 diffusivity in the cell wall to compensate the negative impact of thickened walls. We speculate that higher relative pectin content allows higher gm because pectins increase cell wall hydrophilicity and CO2 molecules cross the wall dissolved in water.


Assuntos
Parede Celular/metabolismo , Cycadopsida/metabolismo , Células do Mesofilo/metabolismo , Dióxido de Carbono/metabolismo , Parede Celular/fisiologia , Clorofila/metabolismo , Cycadopsida/fisiologia , Células do Mesofilo/fisiologia , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal
3.
Plant J ; 99(6): 1031-1046, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31215089

RESUMO

Mesophyll conductance (gm ), the diffusion of CO2 from substomatal cavities to the carboxylation sites in the chloroplasts, is a highly complex trait driving photosynthesis (net CO2 assimilation, AN ). However, little is known concerning the mechanisms by which it is dynamically regulated. The apoplast is considered as a 'key information bridge' between the environment and cells. Interestingly, most of the environmental constraints affecting gm also cause apoplastic responses, cell wall (CW) alterations and metabolic rearrangements. Since CW thickness is a key determinant of gm , we hypothesize that other changes in this cellular compartiment should also influence gm . We study the relationship between the antioxidant apoplastic system and CW metabolism and the gm responses in tobacco plants (Nicotiana sylvestris L.) under two abiotic stresses (drought and salinity), combining in vivo gas-exchange measurements with analyses of antioxidant activities, CW composition and primary metabolism. Stress treatments imposed substantial reductions in AN (58-54%) and gm (59%), accompanied by a strong antioxidant enzymatic response at the apoplastic and symplastic levels. Interestingly, apoplastic but not symplastic peroxidases were positively related to gm . Leaf anatomy remained mostly stable; however, the stress treatments significantly affected the CW composition, specifically pectins, which showed significant relationships with AN and gm . The treatments additionally promoted a differential primary metabolic response, and specific CW-related metabolites including galactose, glucosamine and hydroxycinnamate showed exclusive relationships with gm independent of the stress. These results suggest that gm responses can be attributed to specific changes in the apoplastic antioxidant system and CW metabolism, opening up more possibilities for improving photosynthesis using breeding/biotechnological strategies.


Assuntos
Antioxidantes/metabolismo , Parede Celular/metabolismo , Células do Mesofilo/metabolismo , Nicotiana/metabolismo , Fotossíntese/fisiologia , Dióxido de Carbono/metabolismo , Catalase/metabolismo , Parede Celular/química , Clorofila/metabolismo , Secas , Peróxido de Hidrogênio/metabolismo , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/metabolismo , Peroxidase/metabolismo , Folhas de Planta/anatomia & histologia , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo , Estômatos de Plantas/fisiologia , Salinidade , Superóxido Dismutase/metabolismo , Nicotiana/enzimologia
4.
Mol Plant Microbe Interact ; 33(5): 767-780, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32023150

RESUMO

The cytokinin signaling pathway, which is mediated by Arabidopsis response regulator (ARR) proteins, has been involved in the modulation of some disease-resistance responses. Here, we describe novel functions of ARR6 in the control of plant disease-resistance and cell-wall composition. Plants impaired in ARR6 function (arr6) were more resistant and susceptible, respectively, to the necrotrophic fungus Plectosphaerella cucumerina and to the vascular bacterium Ralstonia solanacearum, whereas Arabidopsis plants that overexpress ARR6 showed the opposite phenotypes, which further support a role of ARR6 in the modulation of disease-resistance responses against these pathogens. Transcriptomics and metabolomics analyses revealed that, in arr6 plants, canonical disease-resistance pathways, like those activated by defensive phytohormones, were not altered, whereas immune responses triggered by microbe-associated molecular patterns were slightly enhanced. Cell-wall composition of arr6 plants was found to be severely altered compared with that of wild-type plants. Remarkably, pectin-enriched cell-wall fractions extracted from arr6 walls triggered more intense immune responses than those activated by similar wall fractions from wild-type plants, suggesting that arr6 pectin fraction is enriched in wall-related damage-associated molecular patterns, which trigger immune responses. This work supports a novel function of ARR6 in the control of cell-wall composition and disease resistance and reinforces the role of the plant cell wall in the modulation of specific immune responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Parede Celular/química , Resistência à Doença , Doenças das Plantas/genética , Arabidopsis/citologia , Regulação da Expressão Gênica de Plantas , Humanos , Células Vegetais , Doenças das Plantas/microbiologia , Imunidade Vegetal
5.
PLoS Genet ; 13(6): e1006832, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28604776

RESUMO

Plants actively perceive and respond to perturbations in their cell walls which arise during growth, biotic and abiotic stresses. However, few components involved in plant cell wall integrity sensing have been described to date. Using a reverse-genetic approach, we identified the Arabidopsis thaliana leucine-rich repeat receptor kinase MIK2 as an important regulator of cell wall damage responses triggered upon cellulose biosynthesis inhibition. Indeed, loss-of-function mik2 alleles are strongly affected in immune marker gene expression, jasmonic acid production and lignin deposition. MIK2 has both overlapping and distinct functions with THE1, a malectin-like receptor kinase previously proposed as cell wall integrity sensor. In addition, mik2 mutant plants exhibit enhanced leftward root skewing when grown on vertical plates. Notably, natural variation in MIK2 (also named LRR-KISS) has been correlated recently to mild salt stress tolerance, which we could confirm using our insertional alleles. Strikingly, both the increased root skewing and salt stress sensitivity phenotypes observed in the mik2 mutant are dependent on THE1. Finally, we found that MIK2 is required for resistance to the fungal root pathogen Fusarium oxysporum. Together, our data identify MIK2 as a novel component in cell wall integrity sensing and suggest that MIK2 is a nexus linking cell wall integrity sensing to growth and environmental cues.


Assuntos
Proteínas de Arabidopsis/genética , Parede Celular/genética , Raízes de Plantas/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Estresse Fisiológico/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/biossíntese , Parede Celular/efeitos dos fármacos , Celulose/biossíntese , Ciclopentanos/metabolismo , Resistência à Doença/genética , Fusarium/patogenicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lignina/biossíntese , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Raízes de Plantas/efeitos dos fármacos , Proteínas Quinases/biossíntese , Cloreto de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos
6.
Plant J ; 93(4): 614-636, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266460

RESUMO

Plants have evolved a repertoire of monitoring systems to sense plant morphogenesis and to face environmental changes and threats caused by different attackers. These systems integrate different signals into overreaching triggering pathways which coordinate developmental and defence-associated responses. The plant cell wall, a dynamic and complex structure surrounding every plant cell, has emerged recently as an essential component of plant monitoring systems, thus expanding its function as a passive defensive barrier. Plants have a dedicated mechanism for maintaining cell wall integrity (CWI) which comprises a diverse set of plasma membrane-resident sensors and pattern recognition receptors (PRRs). The PRRs perceive plant-derived ligands, such as peptides or wall glycans, known as damage-associated molecular patterns (DAMPs). These DAMPs function as 'danger' alert signals activating DAMP-triggered immunity (DTI), which shares signalling components and responses with the immune pathways triggered by non-self microbe-associated molecular patterns that mediate disease resistance. Alteration of CWI by impairment of the expression or activity of proteins involved in cell wall biosynthesis and/or remodelling, as occurs in some plant cell wall mutants, or by wall damage due to colonization by pathogens/pests, activates specific defensive and growth responses. Our current understanding of how these alterations of CWI are perceived by the wall monitoring systems is scarce and few plant sensors/PRRs and DAMPs have been characterized. The identification of these CWI sensors and PRR-DAMP pairs will help us to understand the immune functions of the wall monitoring system, and might allow the breeding of crop varieties and the design of agricultural strategies that would enhance crop disease resistance.


Assuntos
Parede Celular/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/fisiologia , Parede Celular/imunologia , Parede Celular/microbiologia , Celulose/biossíntese , Resistência à Doença/fisiologia , Glucanos/metabolismo , Interações Hospedeiro-Patógeno , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Pectinas/metabolismo , Células Vegetais/imunologia , Células Vegetais/metabolismo , Células Vegetais/microbiologia , Polissacarídeos/metabolismo , Receptores de Reconhecimento de Padrão/imunologia
7.
BMC Plant Biol ; 19(1): 320, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31319813

RESUMO

BACKGROUND: Plant cell walls participate in all plant-environment interactions. Maintaining cell wall integrity (CWI) during these interactions is essential. This realization led to increased interest in CWI and resulted in knowledge regarding early perception and signalling mechanisms active during CWI maintenance. By contrast, knowledge regarding processes mediating changes in cell wall metabolism upon CWI impairment is very limited. RESULTS: To identify genes involved and to investigate their contributions to the processes we selected 23 genes with altered expression in response to CWI impairment and characterized the impact of T-DNA insertions in these genes on cell wall composition using Fourier-Transform Infrared Spectroscopy (FTIR) in Arabidopsis thaliana seedlings. Insertions in 14 genes led to cell wall phenotypes detectable by FTIR. A detailed analysis of four genes found that their altered expression upon CWI impairment is dependent on THE1 activity, a key component of CWI maintenance. Phenotypic characterizations of insertion lines suggest that the four genes are required for particular aspects of CWI maintenance, cell wall composition or resistance to Plectosphaerella cucumerina infection in adult plants. CONCLUSION: Taken together, the results implicate the genes in responses to CWI impairment, cell wall metabolism and/or pathogen defence, thus identifying new molecular components and processes relevant for CWI maintenance.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Genes de Plantas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Ascomicetos , Parede Celular/fisiologia , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Plântula/metabolismo , Plântula/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier
8.
BMC Plant Biol ; 19(1): 385, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488059

RESUMO

Following publication of the original article [1], the author reported that the two curves in the sub-diagram WSR4 in Fig. 2a should be the other way round.

9.
Plant J ; 92(1): 5-18, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28741858

RESUMO

Guard cells dynamically adjust their shape in order to regulate photosynthetic gas exchange, respiration rates and defend against pathogen entry. Cell shape changes are determined by the interplay of cell wall material properties and turgor pressure. To investigate this relationship between turgor pressure, cell wall properties and cell shape, we focused on kidney-shaped stomata and developed a biomechanical model of a guard cell pair. Treating the cell wall as a composite of the pectin-rich cell wall matrix embedded with cellulose microfibrils, we show that strong, circumferentially oriented fibres are critical for opening. We find that the opening dynamics are dictated by the mechanical stress response of the cell wall matrix, and as the turgor rises, the pectinaceous matrix stiffens. We validate these predictions with stomatal opening experiments in selected Arabidopsis cell wall mutants. Thus, using a computational framework that combines a 3D biomechanical model with parameter optimization, we demonstrate how to exploit subtle shape changes to infer cell wall material properties. Our findings reveal that proper stomatal dynamics are built on two key properties of the cell wall, namely anisotropy in the form of hoop reinforcement and strain stiffening.


Assuntos
Arabidopsis/genética , Parede Celular/metabolismo , Simulação por Computador , Vicia faba/genética , Arabidopsis/fisiologia , Fenômenos Biomecânicos , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Vicia faba/fisiologia
10.
Plant J ; 92(3): 386-399, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28792629

RESUMO

Arabidopsis heterotrimeric G-protein complex modulates pathogen-associated molecular pattern-triggered immunity (PTI) and disease resistance responses to different types of pathogens. It also plays a role in plant cell wall integrity as mutants impaired in the Gß- (agb1-2) or Gγ-subunits have an altered wall composition compared with wild-type plants. Here we performed a mutant screen to identify suppressors of agb1-2 (sgb) that restore susceptibility to pathogens to wild-type levels. Out of the four sgb mutants (sgb10-sgb13) identified, sgb11 is a new mutant allele of ESKIMO1 (ESK1), which encodes a plant-specific polysaccharide O-acetyltransferase involved in xylan acetylation. Null alleles (sgb11/esk1-7) of ESK1 restore to wild-type levels the enhanced susceptibility of agb1-2 to the necrotrophic fungus Plectosphaerella cucumerina BMM (PcBMM), but not to the bacterium Pseudomonas syringae pv. tomato DC3000 or to the oomycete Hyaloperonospora arabidopsidis. The enhanced resistance to PcBMM of the agb1-2 esk1-7 double mutant was not the result of the re-activation of deficient PTI responses in agb1-2. Alteration of cell wall xylan acetylation caused by ESK1 impairment was accompanied by an enhanced accumulation of abscisic acid, the constitutive expression of genes encoding antibiotic peptides and enzymes involved in the biosynthesis of tryptophan-derived metabolites, and the accumulation of disease resistance-related secondary metabolites and different osmolites. These esk1-mediated responses counterbalance the defective PTI and PcBMM susceptibility of agb1-2 plants, and explain the enhanced drought resistance of esk1 plants. These results suggest that a deficient PTI-mediated resistance is partially compensated by the activation of specific cell-wall-triggered immune responses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Doenças das Plantas/imunologia , Imunidade Vegetal/genética , Xilanos/metabolismo , Ácido Abscísico/metabolismo , Acetilação , Acetiltransferases , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ascomicetos/fisiologia , Parede Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas de Membrana , Modelos Biológicos , Mutação , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Pseudomonas syringae/fisiologia , Plântula/genética , Plântula/imunologia , Plântula/metabolismo
11.
New Phytol ; 218(2): 661-680, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29451312

RESUMO

Mitogen-activated protein kinases (MAPKs) cascades play essential roles in plants by transducing developmental cues and environmental signals into cellular responses. Among the latter are microbe-associated molecular patterns perceived by pattern recognition receptors (PRRs), which trigger immunity. We found that YODA (YDA) - a MAPK kinase kinase regulating several Arabidopsis developmental processes, like stomatal patterning - also modulates immune responses. Resistance to pathogens is compromised in yda alleles, whereas plants expressing the constitutively active YDA (CA-YDA) protein show broad-spectrum resistance to fungi, bacteria, and oomycetes with different colonization modes. YDA functions in the same pathway as ERECTA (ER) Receptor-Like Kinase, regulating both immunity and stomatal patterning. ER-YDA-mediated immune responses act in parallel to canonical disease resistance pathways regulated by phytohormones and PRRs. CA-YDA plants exhibit altered cell-wall integrity and constitutively express defense-associated genes, including some encoding putative small secreted peptides and PRRs whose impairment resulted in enhanced susceptibility phenotypes. CA-YDA plants show strong reprogramming of their phosphoproteome, which contains protein targets distinct from described MAPKs substrates. Our results suggest that, in addition to stomata development, the ER-YDA pathway regulates an immune surveillance system conferring broad-spectrum disease resistance that is distinct from the canonical pathways mediated by described PRRs and defense hormones.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Arabidopsis/imunologia , Resistência à Doença , MAP Quinase Quinase Quinases/metabolismo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Padronização Corporal , Parede Celular/metabolismo , Flagelina/farmacologia , Fungos/fisiologia , Regulação da Expressão Gênica de Plantas , Modelos Biológicos , Mutação/genética , Moléculas com Motivos Associados a Patógenos/metabolismo , Estômatos de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Regulação para Cima/genética
12.
Plant Biotechnol J ; 14(1): 387-97, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25960248

RESUMO

Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a ß-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded ~70% more ethanol compared with wild type. Plants expressing 35S:AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S:AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.


Assuntos
Acetilesterase/metabolismo , Arabidopsis/genética , Aspergillus/enzimologia , Metabolismo dos Carboidratos , Regulação da Expressão Gênica de Plantas , Lignina/metabolismo , Caules de Planta/metabolismo , Acetilação , Parede Celular/enzimologia , Etanol/metabolismo , Pectinas/metabolismo , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Xilanos/metabolismo
13.
Plant Physiol ; 160(4): 2109-24, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23037505

RESUMO

Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/imunologia , Arabidopsis/microbiologia , Ascomicetos/fisiologia , Resistência à Doença/imunologia , Doenças das Plantas/microbiologia , Transdução de Sinais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Ascomicetos/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Análise por Conglomerados , Ciclopentanos/metabolismo , Resistência à Doença/efeitos dos fármacos , Resistência à Doença/genética , Etilenos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Modelos Biológicos , Mutação/genética , Oxilipinas/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/farmacologia , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética
14.
J Exp Bot ; 64(8): 2481-97, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23585673

RESUMO

Growth and biomechanics of etiolated hypocotyls from Arabidopsis thaliana lines overexpressing xyloglucan endotransglucosylase/hydrolase AtXTH18, AtXTH19, AtXTH20, and PttXET16-34 were studied. Overexpression of AtXTH18, AtXTH19, and AtXTH20 stimulated growth of hypocotyls, while PttXET16-34 overexpression did not show this effect. In vitro extension of frozen/thawed hypocotyls measured by a constant-load extensiometer started from a high-amplitude initial deformation followed by a slow time-dependent creep. Creep of growing XTH-overexpressing (OE) hypocotyls was more linear in time compared with the wild type at pH 5.0, reflecting their higher potential for long-term extension. XTH-OE plants deposited 65-84% more cell wall material per hypocotyl cross-sectional area than wild-type plants. As a result, their wall stress under each external load was lower than in the wild-type. Growing XTH-OE hypocotyls had higher values of initial deformation·stress(-1) compared with the wild type. Plotting creep rates for each line under different loads against the respective wall stress values gave straight lines. Their slopes and intercepts with the abscissa correspond to ϕ (in vitro cell wall extensibility) and y (in vitro cell wall yield threshold) values characterizing cell wall material properties. The wall material in XTH-OE lines was more pliant than in the wild type due to lower y values. In contrast, the acid-induced wall extension in vitro resulted from increasing ϕ values. Thus, three factors contributed to the XTH-OE-stimulated growth in Arabidopsis hypocotyls: their more linear creep, higher values of initial deformation·stress(-1), and lower y values.


Assuntos
Arabidopsis/metabolismo , Parede Celular/fisiologia , Glicosiltransferases/fisiologia , Hipocótilo/crescimento & desenvolvimento , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosiltransferases/biossíntese , Hipocótilo/enzimologia , Hipocótilo/metabolismo , Hipocótilo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Resistência à Tração
15.
J Agric Food Chem ; 55(22): 9021-6, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17960871

RESUMO

In general, cell wall-degrading enzymes produced by plant pathogenic fungi are considered important pathogenicity factors. In this work, we evaluate the implication of xyloglucan endotransglucosylase/hydrolase (XTHs), a potential hemicellulosic repairing enzyme, in the infection mechanism process by the fungus. This study investigated the SlXTHs expresion and xyloglucan endotransglucosylase (XET) activity during infection of two tomato fruit cultivars by Penicillium expansum Link. A. In infected fruits, XET specific activity decreased drastically after long infection periods, 24 and 48 h for Canario and Money Maker tomato fruits, respectively. Real Time RT-PCR of eleven SlXTHs also showed a decrease in expression as the infection progressed in both tomato fruit cultivars. Results suggest that the reduction in SlXTHs expression during infection might be related with the fungus attack mechanism. We suggest a possible transcriptional control of the SlXTHs expression by the fungus, causing a decrease in XET activity and, consequently, lower xyloglucan endotransglucosylation, which changes the xyloglucan structure. These changes might increase the fruit softening and wall disassembly, facilitating the fungus colonization and the progress of the infection.


Assuntos
Frutas/enzimologia , Glicosiltransferases/metabolismo , Penicillium/fisiologia , Doenças das Plantas/microbiologia , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Arabidopsis/genética , DNA de Plantas/química , Frutas/microbiologia , Expressão Gênica , Glicosiltransferases/genética , Solanum lycopersicum/genética , Alinhamento de Sequência
16.
Methods Mol Biol ; 1578: 13-23, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28220412

RESUMO

The plant cell wall is one of the first defensive barriers that pathogens need to overcome to successfully colonize plant tissues. Plant cell wall is considered a dynamic structure that regulates both constitutive and inducible defense mechanisms. The wall is a potential source of a diverse set of Damage-Associated Molecular Patterns (DAMPs), which are signalling molecules that trigger immune responses. However, just a few active wall ligands, such as oligogalacturonic acids (OGs), have been characterized so far. To identify additional wall-derived DAMPs, we obtained different plant wall fractions and tested their capacity to trigger immune responses using a calcium read-out system. To characterize the active DAMPs structures present in these fractions, we applied Glycome Profiling, a technology that uses a large and diverse set of specific monoclonal antibodies against wall carbohydrate ligands. The methods describe here can be used in combination with other biochemical approaches to identify and purify new plant cell wall DAMPs.


Assuntos
Arabidopsis/imunologia , Parede Celular/imunologia , Glicômica/métodos , Proteínas de Arabidopsis/isolamento & purificação , Carboidratos/isolamento & purificação , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
17.
J Agric Food Chem ; 52(26): 7957-63, 2004 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-15612782

RESUMO

We characterized the changes in cell-wall hemicellulosic polysaccharides and the hemicellulose-degrading enzymes associated with apple and tomato fruits infected by Penicillium expansum. Our results showed a reduction in the molecular mass of hemicelluloses, with this reduction being particularly notable in the xyloglucan associated with P. expansum infection. The activation of fungal beta-glucanases was also highlighted. Fruit xyloglucan endotransglucosylase/hydrolase (XTH)-specific activity decreased drastically during the infection process in both apple and tomato fruits. We suggest that XTH reduction during the infection might be related with the fungus attack mechanism. We also suggest that the decrease in activity and the consequent lower xyloglucan endotransglucosylation, together with the increase in endoglucanases, would permit fungal access to the cellulose-xyloglucan network, increase the efficiency of cellulose hydrolysis, and thus facilitate the progress of the fungal infection. The results confirm the importance of hemicellulose degradation in the breakdown of plant cell walls, causing cell-wall loosening, increasing the porosity of the wall, and allowing the colonization of plant tissue.


Assuntos
Frutas/microbiologia , Glucanos/metabolismo , Malus/ultraestrutura , Penicillium/enzimologia , Polissacarídeos/metabolismo , Solanum lycopersicum/ultraestrutura , Xilanos/metabolismo , Parede Celular/química , Frutas/química , Frutas/ultraestrutura , Doenças das Plantas/microbiologia
18.
Front Plant Sci ; 5: 358, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161657

RESUMO

Plant resistance to pathogens relies on a complex network of constitutive and inducible defensive barriers. The plant cell wall is one of the barriers that pathogens need to overcome to successfully colonize plant tissues. The traditional view of the plant cell wall as a passive barrier has evolved to a concept that considers the wall as a dynamic structure that regulates both constitutive and inducible defense mechanisms, and as a source of signaling molecules that trigger immune responses. The secondary cell walls of plants also represent a carbon-neutral feedstock (lignocellulosic biomass) for the production of biofuels and biomaterials. Therefore, engineering plants with improved secondary cell wall characteristics is an interesting strategy to ease the processing of lignocellulosic biomass in the biorefinery. However, modification of the integrity of the cell wall by impairment of proteins required for its biosynthesis or remodeling may impact the plants resistance to pathogens. This review summarizes our understanding of the role of the plant cell wall in pathogen resistance with a focus on the contribution of lignin to this biological process.

19.
Mol Plant ; 5(1): 98-114, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21980142

RESUMO

The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gß subunit displays enhanced susceptibility to these pathogens. Gß/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gß and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.


Assuntos
Proteínas de Arabidopsis/imunologia , Arabidopsis/imunologia , Ascomicetos/fisiologia , Parede Celular/imunologia , Subunidades beta da Proteína de Ligação ao GTP/imunologia , Subunidades gama da Proteína de Ligação ao GTP/imunologia , Doenças das Plantas/microbiologia , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Ascomicetos/imunologia , Parede Celular/química , Parede Celular/genética , Parede Celular/microbiologia , Dimerização , Resistência à Doença , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/imunologia
20.
J Agric Food Chem ; 58(9): 5708-13, 2010 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-20349961

RESUMO

Xyloglucan xyloglucosyltransferase/endohydrolase (XTHs: EC 2.4.1.207 and/or EC 3.2.1.151) has been proposed to have a dual role integrating newly secreted xyloglucan chains into an existing wall-bound xyloglucan and restructuring existing cell wall material by catalyzing transglucosylation between previously wall bound xyloglucan molecules. In this work we generated transgenic tomatoes with altered levels of an XTH gene. These transgenic fruits showed significant overexpression of the XTH proteins in comparison with the wild type. Specific XET activity was approximately 4.33 fold higher in the transgenic fruits compared with the wild type fruits, although in both cases the activity decreased during fruit development. Cell wall hemicelluloses extracted with 24% KOH showed a depolymerization of total sugar and xyloglucan during ripening, although this depolymerization was much lower in the transgenic than in the wild type tomatoes. These results suggest that the increased XET activity in the transgenic plants was responsible for the lower xyloglucan depolymerization. Fruit softening, during ripening, was lower in the transgenic tomatoes, indicating that the xyloglucan structure is related with the softening mechanism and that XET is one of the enzymes involved in the process. We suggest that the role of XET during fruit growth and ripening could be related to the maintenance of the structural integrity of the cell wall and the decrease in activity during ripening might contribute to the fruit softening.


Assuntos
Parede Celular/enzimologia , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Solanum lycopersicum/metabolismo , Sequência de Bases , Primers do DNA , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA