Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 395(7): 2313-23, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19787340

RESUMO

Traces of microbial volatile organic compounds (MVOCs) in air can indicate the presence of growth of moulds in the indoor environment. Ion-mobility spectrometry is a very promising method for detection of these MVOCs, because of its high sensitivity. For development of an in-situ method for detection of MVOCs, a portable ion-mobility spectrometer (IMS) was used and test gases of 14 MVOCs and their respective mixtures were investigated. IMS spectra were recorded as a function of concentration of MVOCs in air. Drift time and mobility of reactant ions formed in positive polarity mode were determined and correlated with the mass-to-charge ratio (m/z) of the MVOCs investigated. The estimated detection limit has a specific value for each MVOC and is in the range 3 to 96 microg m(-3) (1 to 52 ppb(V)). Indoor trials show that IMS can indicate hidden mould growth.


Assuntos
Bactérias/metabolismo , Análise Espectral/métodos , Compostos Orgânicos Voláteis/química
2.
J Hazard Mater ; 343: 107-115, 2018 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-28942183

RESUMO

Ozonation and advanced oxidation processes based on photocatalysis (P.C.) and non-thermal plasma generated in a dielectric barrier discharge (DBD) in different gas atmospheres were compared for the degradation and mineralization of 2,4-dichlorophenoxy acetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) in aqueous solutions, using a planar falling film reactor with comparable design. The energetic yields (G50) as measure of the efficiencies of the different methods are for 2,4-D in the order DBD/Ar-Fenton>ozonation>DBD/Ar>P.C.ozonation>DBD/Ar:O2≫DBD/Air>P.C.oxidation. For 2,4-DCP the order is ozonation≫DBD/Ar-Fenton>P.C.ozonation>DBD/Ar>DBD/Ar:O2≫P.C.oxidation>DBD/Air. The degradation by using ozone is very effective, but it should be noted that the mineralization measured by the total organic carbon (TOC) removal is low. The reason is the formation of stable towards ozone intermediates, especially low chain carboxylic acids. The fate of these intermediates during the degradation with the different methods has been followed and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA