Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35165193

RESUMO

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Assuntos
Rios/química , Poluição Química da Água/análise , Poluição Química da Água/prevenção & controle , Ecossistema , Exposição Ambiental , Monitoramento Ambiental , Humanos , Preparações Farmacêuticas , Águas Residuárias/análise , Águas Residuárias/química , Água/análise , Água/química , Poluentes Químicos da Água/análise
2.
Environ Microbiol ; 25(12): 3035-3051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655671

RESUMO

Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.


Assuntos
Poluentes Ambientais , Integrons , Antibacterianos/farmacologia , Bactérias/genética , Elementos de DNA Transponíveis/genética , Resistência a Múltiplos Medicamentos , Integrons/genética , Plasmídeos/genética , Indústria Farmacêutica
3.
Sci Total Environ ; 870: 161805, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36708818

RESUMO

The emergence of extended-spectrum ß-lactamase (ESBL)- and especially carbapenemases in Enterobacterales has led to limited therapeutic options. Therefore, it is critical to fully understand all potential routes of transmission, especially in high-risk sources such as hospital wastewater. This study aimed to quantify four enteric opportunistic pathogens (EOPs), total, ESBL- and carbapenem-resistant coliforms and their corresponding resistance genes (two ESBL and five carbapenemase genes) and to characterize enterobacterial isolates from hospital wastewater from two large hospitals in Zagreb over two seasons. Culturing revealed similar average levels of total and carbapenem-resistant coliforms (3.4 × 104 CFU/mL), and 10-fold lower levels of presumptive ESBL coliforms (3 × 103 CFU/mL). Real-time PCR revealed the highest E. coli levels among EOPs (105 cell equivalents/mL) and the highest levels of the blaKPC gene (up to 10-1 gene copies/16S copies) among all resistance genes examined. Of the 69 ESBL- and 90 carbapenemase-producing Enterobacterales (CPE) isolates from hospital wastewater, all were multidrug-resistant and most were identified as Escherichia coli, Citrobacter, Enterobacter, and Klebsiella. Among ESBL isolates, blaCTX-M-15 was the most prevalent ESBL gene, whereas in CPE isolates, blaKPC-2 and blaNDM-1 were the most frequently detected CP genes, followed by blaOXA-48. Molecular epidemiology using PFGE, MLST and whole-genome sequencing (WGS) revealed that clinically relevant variants such as E. coli ST131 (blaCTX-M-15/blaTEM-116) and ST541 (blaKPC-2), K. pneumoniae ST101 (blaOXA-48/blaNDM-1), and Enterobacter cloacae complex ST277 (blaKPC-2/blaNDM-1) were among the most frequently detected clone types. WGS also revealed a diverse range of resistance genes and plasmids in these and other isolates, as well as transposons and insertion sequences in the flanking regions of the blaCTX-M, blaOXA-48, and blaKPC-2 genes, suggesting the potential for mobilization. We conclude that hospital wastewater is a potential secondary reservoir of clinically important pathogens and resistance genes and therefore requires effective pretreatment before discharge to the municipal sewer system.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Águas Residuárias , Tipagem de Sequências Multilocus , Croácia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Klebsiella pneumoniae , Hospitais , Klebsiella/genética , Klebsiella/metabolismo , Enterobacter/genética , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana
4.
J Hazard Mater ; 427: 128155, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34991006

RESUMO

Extended-spectrum ß-lactamase (ESBL)- and carbapenemase-producing Enterobacterales are a critical global health problem and wastewater treatment plants (WWTPs) can promote their spread into the environment; yet their efficacy is not well characterized. Here, we have used conventional culturing to monitor coliform bacteria and quantitative PCR to monitor 2 ESBL and 5 carbapenemase (CP) genes and 4 enteric opportunistic pathogens (EOPs) in the influent and effluent of 7 Croatian WWTPs in two seasons. In general, levels of total, cefotaxime- and carbapenem-resistant coliforms were significantly reduced but not eliminated by conventional treatment in most WWTPs. Most WWTPs efficiently removed EOPs such as K. pneumoniae and A. baumannii, while E. coli and Enterococcus spp. were reduced but still present in relatively high concentrations in the effluent. ESBL genes (blaTEM and blaCTX-M-32) were only slightly reduced or enriched after treatment. CP genes, blaKPC-3, blaNDM and blaOXA-48-like, were sporadically detected, while blaIMP and blaVIM were frequently enriched during treatment and correlated with plant size, number or size of hospitals in the catchment area, and COD effluent concentration. Our results suggest that improvements in wastewater treatment technologies are needed to minimize the risk of environmental contamination with top priority EOPs and ARGs and the resulting public health.


Assuntos
Águas Residuárias , Purificação da Água , Antibacterianos , Carbapenêmicos/farmacologia , Cefalosporinas , Croácia , Escherichia coli , Testes de Sensibilidade Microbiana , Prevalência , beta-Lactamases/genética
5.
Sci Total Environ ; 749: 142357, 2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33370905

RESUMO

Environments polluted with excessively high levels of antibiotics released from manufacturing sites can act as a source of transferable antibiotic resistance (AR) genes to human commensal and pathogenic bacteria. The aim of this study was to evaluate AR of bacteria isolated from the Sava river sediments (Croatia) at the discharge site of effluents from azithromycin production compared to those from the upstream site and isolates collected in Croatian hospitals. A total of 228 environmental strains of azithromycin-resistant bacteria were isolated and identified, with 124 from the discharge site and 104 from the upstream site. In addition, a total of 90 clinical, azithromycin-resistant streptococcal and staphylococcal isolates obtained from the Croatian Reference Center for Antibiotic Resistance Surveillance were analyzed. PCR screening of isolates on 11 relevant macrolide-resistance genes (MRGs) showed that discharge isolates had greater detection frequencies for 4 gene targets (ermB, msrE, mphE and ermF) compared to upstream isolates. Among clinical isolates, the most frequently detected gene was ermB, followed by msrD, mefE and mefC. The discharge site demonstrated a greater abundance of isolates with co-occurrence of two different MRGs (predominantly msrE-mphE) than the upstream site, but a lower abundance than the clinical sources (most commonly msrD-mefE). The simultaneous presence of three or even four MRGs was specific for the discharge and clinical isolates, but not for the upstream isolates. When MRG results were sorted by gene mechanism, the ribosomal methylation (erm) and protection genes (msr) were the most frequently detected among both the discharge and the clinical isolates. Following sequencing, high nucleotide sequence similarity was observed between ermB in the discharge isolates and the clinical streptococcal isolates, suggesting a possible transfer of the ermB gene between bacteria of clinical and environmental origin. Our study highlights the importance of environmental bacterial populations as reservoirs for clinically relevant macrolide-resistance genes.


Assuntos
Antibacterianos , Macrolídeos , Antibacterianos/farmacologia , Bactérias , Croácia , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Rios
6.
Sci Total Environ ; 706: 136001, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31855637

RESUMO

Environmental discharges of very high (mg/L) antibiotic levels from pharmaceutical production contributed to the selection, spread and persistence of antibiotic resistance. However, the effects of less antibiotic-polluted effluents (µg/L) from drug-formulation on exposed aquatic microbial communities are still scarce. Here we analyzed formulation effluents and sediments from the receiving creek collected at the discharge site (DW0), upstream (UP) and 3000 m downstream of discharge (DW3000) during winter and summer season. Chemical analyses indicated the largest amounts of trimethoprim (up to 5.08 mg/kg) and azithromycin (up to 0.39 mg/kg) at DW0, but sulfonamides accumulated at DW3000 (total up to 1.17 mg/kg). Quantitative PCR revealed significantly increased relative abundance of various antibiotic resistance genes (ARGs) against ß-lactams, macrolides, sulfonamides, trimethoprim and tetracyclines in sediments from DW0, despite relatively high background levels of some ARGs already at UP site. However, only sulfonamide (sul2) and macrolide ARG subtypes (mphG and msrE) were still elevated at DW3000 compared to UP. Sequencing of 16S rRNA genes revealed pronounced changes in the sediment bacterial community composition from both DW sites compared to UP site, regardless of the season. Numerous taxa with increased relative abundance at DW0 decreased to background levels at DW3000, suggesting die-off or lack of transport of effluent-originating bacteria. In contrast, various taxa that were more abundant in sediments than in effluents increased in relative abundance at DW3000 but not at DW0, possibly due to selection imposed by high sulfonamide levels. Network analysis revealed strong correlation between some clinically relevant ARGs (e.g. blaGES, blaOXA, ermB, tet39, sul2) and taxa with elevated abundance at DW sites, and known to harbour opportunistic pathogens, such as Acinetobacter, Arcobacter, Aeromonas and Shewanella. Our results demonstrate the necessity for improved management of pharmaceutical and rural waste disposal for mitigating the increasing problems with antibiotic resistance.


Assuntos
Resistência Microbiana a Medicamentos , Genes Bacterianos , Antibacterianos , Bactérias , Sedimentos Geológicos , RNA Ribossômico 16S , Águas Residuárias
7.
Water Res ; 162: 437-445, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31301473

RESUMO

Antibiotic resistance is an emerging global health crisis, driven largely by overuse and misuse of antibiotics. However, there are examples in which the production of these antimicrobial agents has polluted the environment with active antibiotic residues, selecting for antibiotic resistant bacteria and the genes they carry. In this work, we have used shotgun metagenomics to investigate the taxonomic structure and resistance gene composition of sludge communities in a treatment plant in Croatia receiving wastewater from production of the macrolide antibiotic azithromycin. We found that the total abundance of antibiotic resistance genes was three times higher in sludge from the treatment plant receiving wastewater from pharmaceutical production than in municipal sludge from a sewage treatment plant in Zagreb. Surprisingly, macrolide resistance genes did not have higher abundances in the industrial sludge, but genes associated with mobile genetic elements such as integrons had. We conclude that at high concentrations of antibiotics, selection may favor taxonomic shifts towards intrinsically resistant species or strains harboring chromosomal resistance mutations rather than acquisition of mobile resistance determinants. Our results underscore the need for regulatory action also within Europe to avoid release of antibiotics into the environment.


Assuntos
Microbiota , Águas Residuárias , Antibacterianos , Croácia , Farmacorresistência Bacteriana , Europa (Continente) , Genes Bacterianos , Macrolídeos , Esgotos
8.
Environ Int ; 130: 104735, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31260930

RESUMO

High antibiotic releases from manufacturing facilities have been identified as a risk factor for antibiotic resistance development in bacterial pathogens. However, the role of antibiotic pollution in selection and transferability of antibiotic resistance genes (ARGs) is still limited. In this study, we analyzed effluents from azithromycin-synthesis and veterinary-drug formulation facilities as well as sediments from receiving river and creek taken at the effluent discharge sites, upstream and downstream of discharge. Culturing showed that the effluent discharge significantly increased the proportion of antibiotic resistant bacteria in exposed sediments compared to the upstream ones. Quantitative real-time PCR revealed that effluents from both industries contained high and similar relative abundances of resistance genes [sul1, sul2, qacE/qacEΔ1, tet(A)], class 1 integrons (intI1) and IncP-1 plasmids (korB). Consequently, these genes significantly increased in relative abundances in receiving sediments, with more pronounced effects being observed for river than for creek sediments due to lower background levels of the investigated genes in the river. In addition, effluent discharge considerably increased transfer frequencies of captured ARGs from exposed sediments into Escherichia coli CV601 recipient as shown by biparental mating experiments. Most plasmids exogenously captured from effluent and polluted sediments belonged to the broad host range IncP-1ε plasmid group, conferred multiple antibiotic resistance and harbored class 1 integrons. Discharge of pharmaceutical waste from antibiotic manufacturing sites thus poses a risk for development and dissemination of multi-resistant bacteria, including pathogens.


Assuntos
Antibacterianos , Resistência Microbiana a Medicamentos , Genes Bacterianos/genética , Resíduos Industriais , Sequências Repetitivas Dispersas/genética , Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Indústria Farmacêutica , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Resíduos Industriais/efeitos adversos , Resíduos Industriais/análise , Rios/química
9.
Environ Int ; 123: 501-511, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30622075

RESUMO

Effluents from antibiotic manufacturing may contain high concentrations of antibiotics, which are the main driving force behind the selection and spread of antibiotic resistance genes in the environment. However, our knowledge about the impact of such effluent discharges on the antibiotic resistome and bacterial communities is still limited. To gain insight into this impact, we collected effluents from an azithromycin-manufacturing industry discharge site as well as upstream and downstream sediments from the receiving Sava river during both winter and summer season. Chemical analyses of sediment and effluent samples indicated that the effluent discharge significantly increased the amount of macrolide antibiotics, heavy metals and nutrients in the receiving river sediments. Quantitative PCR revealed a significant increase of relative abundances of macrolide-resistance genes and class 1 integrons in effluent-impacted sediments. Amplicon sequencing of 16S rRNA genes showed spatial and seasonal bacterial community shifts in the receiving sediments. Redundancy analysis and Mantel test indicated that macrolides and copper together with nutrients significantly correlated with community shift close to the effluent discharge site. The number of taxa that were significantly increased in relative abundance at the discharge site decreased rapidly at the downstream sites, showing the resilience of the indigenous sediment bacterial community. Seasonal changes in the chemical properties of the sediment along with changes in effluent community composition could be responsible for sediment community shifts between winter and summer. Altogether, this study showed that the discharge of pharmaceutical effluents altered physicochemical characteristics and bacterial community of receiving river sediments, which contributed to the enrichment of macrolide-resistance genes and integrons.


Assuntos
Azitromicina , Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Rios/microbiologia , Poluição Química da Água/efeitos adversos , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Genes Bacterianos , Sedimentos Geológicos/química , Integrons , Metais Pesados/análise , Microbiota/efeitos dos fármacos , RNA Ribossômico 16S/genética , Rios/química , Estações do Ano , Águas Residuárias/química , Microbiologia da Água
11.
Front Microbiol ; 8: 2675, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29387045

RESUMO

Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs from environmental hotspots such as discharge sites of pharmaceutical effluents.

12.
Water Res ; 126: 79-87, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28923406

RESUMO

Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 µg/L). Accordingly, the highest total concentrations (up to 30 µg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low µg/L to approx. 200 µg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few µg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance.


Assuntos
Antibacterianos/análise , Antibacterianos/toxicidade , Indústria Farmacêutica , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Croácia , Daphnia/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Ecotoxicologia/métodos , Embrião não Mamífero/efeitos dos fármacos , Meio Ambiente , Monitoramento Ambiental , Resíduos Industriais/análise , Rios/química , Estações do Ano , Drogas Veterinárias/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA