Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 430(7002): 865-7, 2004 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-15318214

RESUMO

Each giant planet of the Solar System has two main types of moons. 'Regular' moons are typically larger satellites with prograde, nearly circular orbits in the equatorial plane of their host planets at distances of several to tens of planetary radii. The 'irregular' satellites (which are typically smaller) have larger orbits with significant eccentricities and inclinations. Despite these common features, Neptune's irregular satellite system, hitherto thought to consist of Triton and Nereid, has appeared unusual. Triton is as large as Pluto and is postulated to have been captured from heliocentric orbit; it traces a circular but retrograde orbit at 14 planetary radii from Neptune. Nereid, which exhibits one of the largest satellite eccentricities, is believed to have been scattered from a regular satellite orbit to its present orbit during Triton's capture. Here we report the discovery of five irregular moons of Neptune, two with prograde and three with retrograde orbits. These exceedingly faint (apparent red magnitude m(R) = 24.2-25.4) moons, with diameters of 30 to 50 km, were presumably captured by Neptune.

2.
Science ; 347(6221): 526-30, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25635094

RESUMO

The death of massive stars is believed to involve aspheric explosions initiated by the collapse of an iron core. The specifics of these catastrophic explosions remain uncertain, due partly to limited observational constraints on asymmetries deep inside the star. Here we present near-infrared observations of the young supernova remnant Cassiopeia A, descendant of a type IIb core-collapse explosion, and a three-dimensional map of its interior unshocked ejecta. The remnant's interior has a bubble-like morphology that smoothly connects to and helps explain the multiringed structures seen in the remnant's bright reverse-shocked main shell of expanding debris. This internal structure may originate from turbulent mixing processes that encouraged outwardly expanding plumes of radioactive (56)Ni-rich ejecta. If this is true, substantial amounts of its decay product, (56)Fe, may still reside in these interior cavities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA