Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Thorax ; 76(2): 178-181, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33139449

RESUMO

To investigate whether hyperpolarised xenon-129 MRI (HXeMRI) enables regional and physiological resolution of diffusing capacity limitations in chronic obstructive pulmonary disease (COPD), we evaluated 34 COPD subjects and 11 healthy volunteers. We report significant correlations between airflow abnormality quantified by HXeMRI and per cent predicted forced expiratory volume in 1 s; HXeMRI gas transfer capacity to red blood cells and carbon monoxide diffusion capacity (%DLCO); and HXeMRI gas transfer capacity to interstitium and per cent emphysema quantified by multidetector chest CT. We further demonstrate the capability of HXeMRI to distinguish varying pathology underlying COPD in subjects with low %DLCO and minimal emphysema.


Assuntos
Imageamento por Ressonância Magnética/métodos , Doença Pulmonar Obstrutiva Crônica/diagnóstico por imagem , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Troca Gasosa Pulmonar , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X , Isótopos de Xenônio
2.
J Environ Manage ; 261: 110209, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148279

RESUMO

Incorporation of compost into soil can significantly alter soil physical properties, nutrient dynamics, and vegetation establishment. Strategic compost application to disturbed, degraded urban soil may provide benefits to soil properties. This review compared twenty-five peer-reviewed studies that evaluated changes in soil bulk density, infiltration rate, hydraulic conductivity, and water retention where compost was incorporated into urban soils. A wide range of compost rates and incorporation depths were evaluated in these studies across many soil types. Compost incorporation generally reduced bulk density, enhanced infiltration and hydraulic conductivity, and increased water content and plant available water, compared to unamended controls. In the four studies on runoff water quality, compost incorporation often resulted in higher initial nutrient content in runoff water, but also enhanced grass growth and reduced sediment loss. Few studies evaluated multiple compost application rates or incorporation depths, and the ways in which compost application rates were reported varied widely between studies making it difficult to directly compare them. Four studies investigated the long-term effects of compost incorporation, and there was no clear pattern of why some soils display enhanced physical properties over time and others do not. Compost was largely reported to have a positive effect on degraded urban soils. Little research has focused on the longevity of compost in urban soils after one application, and thus, this would be a valuable topic of further investigation.


Assuntos
Compostagem , Poluentes do Solo , Plantas , Solo
3.
J Magn Reson Imaging ; 45(5): 1257-1275, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28211591

RESUMO

Magnetic resonance imaging (MRI) has become the preferred modality for imaging the knee to show pathology and guide patient management and treatment. The knee is one of the most frequently injured joints, and knee pain is a pervasive difficulty that can affect all age groups. Due to the diverse pathology, complex anatomy, and a myriad of injury mechanisms of the knee, the MRI knee protocol and sequences should ensure detection of both soft tissue and osseous structures in detail and with accuracy. The knowledge of knee anatomy and the normal or injured MRI appearance of these key structures are critical for precise diagnosis. Advances in MRI technology provide the imaging necessary to obtain high-resolution images to evaluate menisci, ligaments, and tendons. Furthermore, recent advances in MRI techniques allow for improved imaging in the postoperative knee and metal artifact reduction, tumor imaging, cartilage evaluation, and visualization of nerves. As treatment and operative management techniques evolve, understanding the correct application of these advancements in MRI of the knee will prove to be valuable to clinical practice. LEVEL OF EVIDENCE: 5 J. MAGN. RESON. IMAGING 2017;45:1257-1275.


Assuntos
Traumatismos do Joelho/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/tendências , Ligamento Cruzado Anterior/diagnóstico por imagem , Neoplasias Ósseas/diagnóstico por imagem , Cartilagem/diagnóstico por imagem , Humanos , Imageamento Tridimensional , Ligamento Cruzado Posterior/diagnóstico por imagem , Tendões/diagnóstico por imagem
4.
J Environ Qual ; 45(5): 1549-1557, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695769

RESUMO

United States Golf Association putting greens are susceptible to nitrogen (N) and phosphorus (P) leaching. Inorganic soil amendments are used to increase moisture and nutrient retention and may influence N and P leaching. This study was conducted to determine whether N and P leaching could be reduced using soil amendments and surfactant-modified soil amendments. Treatments included a control (sand), sand-peat, zeolite, calcined clay, hexadecyltrimethylammonium-zeolite, and hexadecyltrimethylammonium-calcined clay. Lysimeters were filled with a 30-cm rootzone layer of sand-peat (85:15 by volume), below which a 5-cm treatment layer of amendments was placed. A solution of NO-N, NH-N, and orthophosphate-P (2300, 2480, and 4400 µg mL, respectively) was injected at the top of each lysimeter, and leachate was collected using an autocollector set to collect a 10-mL sample every min until four pore volumes were collected. Uncoated amendments, sand, and peat had no influence on NO-N retention, whereas hexadecyltrimethylammonium-coated amendments reduced NO-N leaching to below detectable limits. Both coated and uncoated amendments reduced NH-N leaching, with zeolite reducing NH-N leached to near zero regardless of hexadecyltrimethylammonium coating. Pure sand resulted in a 13% reduction of applied orthophosphate-P leaching, whereas peat contributed to orthophosphate-P leaching. Surfactant-modified amendments reduced orthophosphate-P leaching by as much as 97%. Surfactant-modified soil amendments can reduce NO-N, NH-N, and orthophosphate-P leaching and, thus, may be a viable option for removing leached N and P before they enter surface or ground waters.


Assuntos
Nitrogênio/análise , Fósforo/análise , Tensoativos/química , Raízes de Plantas , Solo , Poluentes do Solo
5.
FEMS Microbiol Ecol ; 99(5)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36977576

RESUMO

There is increasing evidence that microbes can help ameliorate plant growth under environmental stress. Still, it is largely unknown what microbes and potential functions are involved in sustaining turfgrass, the major component of urban/suburban landscapes, under drought. We examined microbial responses to water deficits in bulk soil, rhizosphere, and root endosphere of bermudagrass by applying evapotranspiration (ET)-based dynamic irrigation twice per week during the growing season to create six treatments (0%, 40%, 60%, 80%, 100%, and 120% ET) and respective drought-stressed soil conditions. Bacterial and fungal communities were analyzed via marker gene amplicon sequencing and thereafter drought-reshaped potential functions of the bacterial community were projected. Slight yet significant microbial responses to irrigation treatments were observed in all three microhabitats. The root endophytic bacterial community was most responsive to water stress. No-irrigation primarily increased the relative abundance of root endophytic Actinobacteria, especially the genus Streptomyces. Irrigation at ≤40% ET increased the relative abundances of PICRUSt2-predicted functional genes encoding 1-aminocyclopropane-1-carboxylic acid deaminase, superoxide dismutase, and chitinase in root endosphere. Our data suggest that the root endophytic Actinobacteria are likely the key players to improve bermudagrass fitness under drought by modulating phytohormone ethylene production, scavenging reactive oxygen species, or ameliorating nutrient acquisition.


Assuntos
Actinobacteria , Cynodon , Desidratação , Microbiota , Raízes de Plantas , Actinobacteria/efeitos dos fármacos , Actinobacteria/genética , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Cynodon/microbiologia , Microbiota/efeitos dos fármacos , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Solo/química , Microbiologia do Solo , Água/farmacologia , Biodiversidade , Genes Bacterianos/genética
6.
Front Microbiol ; 13: 1078836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713160

RESUMO

The plant breeding program has developed many cultivars of tall fescue (Festuca arundinacea) with low maintenance and stress tolerance. While the root-associated microbial community helps confer stress tolerance in the host plant, it is still largely unknown how the microbiota varies with plant cultivars under water stress. The study aimed to characterize drought-responsive bacteria and fungi in the roots and rhizosphere of different tall fescue cultivars. Intact grass-soil cores were collected from six cultivars grown in a field trial under no-irrigation for 3 years. Tall fescue under irrigation was also sampled from an adjacent area as the contrast. Bacterial and fungal communities in roots, rhizosphere, and bulk soil were examined for abundance, diversity, and composition using quantitative-PCR and high-throughput amplicon sequencing of 16S rRNA gene and ITS regions, respectively. Differences in microbial community composition and structure between non-irrigated and irrigated samples were statistically significant in all three microhabitats. No-irrigation enriched Actinobacteria in all three microhabitats, but mainly enriched Basidiomycota in the root endosphere and only Glomeromycota in bulk soil. Tall fescue cultivars slightly yet significantly modified endophytic microbial communities. Cultivars showing better adaptability to drought encompassed more relatively abundant Actinobacteria, Basidiomycota, or Glomeromycota in roots and the rhizosphere. PICRUSt2-based predictions revealed that the relative abundance of functional genes in roots related to phytohormones, antioxidant enzymes, and nutrient acquisition was enhanced under no-irrigation. Significant associations between Streptomyces and putative drought-ameliorating genes underscore possible mechanics for microbes to confer tall fescue with water stress tolerance. This work sheds important insight into the potential use of endophytic microbes for screening drought-adaptive genotypes and cultivars.

7.
PLoS One ; 14(6): e0218967, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31233561

RESUMO

Grass species selection and regular mowing are essential for maintaining aesthetic and environmentally sound turfgrass systems. However, their impacts on the soil microbial community, the driving force for soil N cycle and thus the environmental fate of N, are largely unknown. Here, the high throughput sequencing of 16S rRNA gene and internal transcribed spacer (ITS) region was used to evaluate how long-term defoliation management and grass growth habits (propagation types and photosynthetic pathways) modulated the soil microbial community. The investigation included three cool-season C3 grasses (creeping bentgrass, Kentucky bluegrass, and tall fescue) and three warm-season C4 grasses (bermudagrass, St. Augustinegrass, and zoysiagrass). Creeping bentgrass and bermudagrass were managed as putting greens with a lower mowing height; tall fescue spread in a tussock manner via tiller production whereas other grasses propagated in a creeping manner via rhizomes and/or stolons. Ordination analysis showed that both bacterial and fungal communities were primarily separated between putting green and non-putting green systems; and so were N-cycle gene relative abundances, with the putting greens being greater in N mineralization but lower in nitrification. Compared to warm-season grasses, cool-season grasses slightly and yet significantly enhanced the relative abundances of Chloroflexi, Verrucomicrobia, and Glomeromycota. Tall fescue yielded significantly greater bacterial and fungal richness than non-tussock grasses. As the main explanatory soil property, pH only contributed to < 18% of community compositional variations among turfgrass systems. Our results indicate that defoliation management was the main factor in shaping the soil microbial community and grass growth habits was secondary in modulating microbial taxon distribution.


Assuntos
Microbiota/fisiologia , Poaceae/crescimento & desenvolvimento , Poaceae/genética , Hábitos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fotossíntese/genética , RNA Ribossômico 16S/genética , Solo , Microbiologia do Solo
8.
J Thorac Imaging ; 31(5): 285-95, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27428024

RESUMO

The assessment of early pulmonary disease and its severity can be difficult in young children, as procedures such as spirometry cannot be performed on them. Computed tomography provides detailed structural images of the pulmonary parenchyma, but its major drawback is that the patient is exposed to ionizing radiation. In this context, magnetic resonance imaging (MRI) is a promising technique for the evaluation of pediatric lung disease, especially when serial imaging is needed. Traditionally, MRI played a small role in evaluating the pulmonary parenchyma. Because of its low proton density, the lungs display low signal intensity on conventional proton-based MRI. Hyperpolarized (HP) gases are inhaled contrast agents with an excellent safety profile and provide high signal within the lung, allowing for high temporal and spatial resolution imaging of the lung airspaces. Besides morphologic information, HP MR images also offer valuable information about pulmonary physiology. HP gas MRI has already made new contributions to the understanding of pediatric lung diseases and may become a clinically useful tool. In this article, we discuss the HP gas MRI technique, special considerations that need to be made when imaging children, and the role of MRI in 2 of the most common chronic pediatric lung diseases, asthma and cystic fibrosis. We also will discuss how HP gas MRI may be used to evaluate normal lung growth and development and the alterations occurring in chronic lung disease of prematurity and in patients with a congenital diaphragmatic hernia.


Assuntos
Pneumopatias/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adolescente , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem
10.
Magn Reson Imaging ; 28(1): 139-45, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19695813

RESUMO

PURPOSE: Evaluate feasibility of using time-resolved and high-resolution, contrast-enhanced magnetic resonance angiography (MRA) at 7 T for characterization of an animal model of pulmonary embolism. METHODS: MRAs were performed in five rabbits using a 7-T MR scanner. Preceding the MR studies, each rabbit underwent a pulmonary artery catheterization with balloon placement. Two doses of gadodiamide were injected: first during a time-resolved MRA, immediately followed by a high-resolution acquisition. Balloon was then deflated, permitting reperfusion for 5 min. A second dose was then injected and another high-resolution MRA acquired. Measurements of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and vessel cross-sections down to fourth-order branches were made, among other parameters. RESULTS: Occlusion was detected in all rabbits. Despite a TE of 0.58 ms for the time-resolved MRA, regions of nonuniform enhancement attributed to susceptibility effects at the 7-T field were observed in perfused lung. Mean SNR=7.5+/-3.3 and 134.2+/-46.5 for the lung and aorta, respectively, and mean CNR=126.7+/-46.4 for aorta versus lung were obtained. Diameters of vessels in lung that was never occluded were not statistically different from those in reperfused lung. CONCLUSION: Results show that time-resolved and high-resolution MRA of the lung are feasible at 7 T and provide high SNR, CNR and resolution, but TEs smaller than 0.58 ms are required to avoid susceptibility artifacts in time-resolved MRAs.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Angiografia por Ressonância Magnética/métodos , Artéria Pulmonar/patologia , Embolia Pulmonar/patologia , Animais , Projetos Piloto , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Magn Reson Imaging ; 27(6): 845-51, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19269767

RESUMO

The purpose of this study was to assess the properties of a model system for hyperpolarized He-3 (HHe) diffusion MR imaging created from the lungs of New Zealand white rabbits by drying the lungs while inflated at constant pressure. The dried lungs were prepared by sacrificing the animal, harvesting the lungs en bloc and dehydrating the lungs for several days using dry compressed air. In four rabbits, the apparent diffusion coefficient (ADC) of HHe gas was measured in vivo and, within 1 week, in vitro in the dried lungs. To assess long-term repeatability, in vitro ADC values were measured again 3 months later. Dried lungs from four additional rabbits were imaged twice on the same day to assess the short-term repeatability of ADC measurements, and tissue samples from these lungs were then removed for histology. In vivo and in vitro ADC maps showed similar features and similar distributions of ADC values; mean in vivo and in vitro ADC values differed by less than 12%. The in vitro mean ADC values were highly reproducible, with no more than 5% difference between measurements for the short-term repeatability and less than 17% difference between measurements for the long-term repeatability. Histological samples from the dried lungs demonstrated that the lung structure remained intact. These results suggest that the dried lungs are a useful and inexpensive alternative to human or in vivo animal studies for HHe diffusion MR sequence development, testing and optimization.


Assuntos
Imagem de Difusão por Ressonância Magnética/métodos , Hélio/administração & dosagem , Pulmão/anatomia & histologia , Administração por Inalação , Animais , Meios de Contraste/administração & dosagem , Isótopos/administração & dosagem , Coelhos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA