RESUMO
OBJECTIVE: Increasing evidence implicates serine proteinases in pathologic tissue turnover. The aim of this study was to assess the role of the transmembrane serine proteinase matriptase in cartilage destruction in osteoarthritis (OA). METHODS: Serine proteinase gene expression in femoral head cartilage obtained from either patients with hip OA or patients with fracture to the neck of the femur (NOF) was assessed using a low-density array. The effect of matriptase on collagen breakdown was determined in cartilage degradation models, while the effect on matrix metalloproteinase (MMP) expression was analyzed by real-time polymerase chain reaction. ProMMP processing was determined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis/N-terminal sequencing, while its ability to activate proteinase-activated receptor 2 (PAR-2) was determined using a synovial perfusion assay in mice. RESULTS: Matriptase gene expression was significantly elevated in OA cartilage compared with NOF cartilage, and matriptase was immunolocalized to OA chondrocytes. We showed that matriptase activated proMMP-1 and processed proMMP-3 to its fully active form. Exogenous matriptase significantly enhanced cytokine-stimulated cartilage collagenolysis, while matriptase alone caused significant collagenolysis from OA cartilage, which was metalloproteinase-dependent. Matriptase also induced MMP-1, MMP-3, and MMP-13 gene expression. Synovial perfusion data confirmed that matriptase activates PAR-2, and we demonstrated that matriptase-dependent enhancement of collagenolysis from OA cartilage is blocked by PAR-2 inhibition. CONCLUSION: Elevated matriptase expression in OA and the ability of matriptase to activate selective proMMPs as well as induce collagenase expression make this serine proteinase a key initiator and inducer of cartilage destruction in OA. We propose that the indirect effects of matriptase are mediated by PAR-2, and a more detailed understanding of these mechanisms may highlight important new therapeutic targets for OA treatment.
Assuntos
Cartilagem Articular/enzimologia , Condrócitos/enzimologia , Matriz Extracelular/metabolismo , Metaloproteinases da Matriz/metabolismo , Osteoartrite do Quadril/enzimologia , Serina Endopeptidases/metabolismo , Animais , Bovinos , Fraturas do Colo Femoral/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Secretadas Inibidoras de Proteinases/genética , Proteínas Secretadas Inibidoras de Proteinases/metabolismo , Receptor PAR-2/metabolismo , Serina Endopeptidases/genéticaRESUMO
OBJECTIVE: To assess the ability of matriptase, a type II transmembrane serine proteinase, to promote aggrecan loss from the cartilage of patients with osteoarthritis (OA) and to determine whether its inhibition can prevent aggrecan loss and cartilage damage in experimental OA. METHODS: Aggrecan release from human OA cartilage explants and human stem cell-derived cartilage discs was evaluated, and cartilage-conditioned media were used for Western blotting. Gene expression was analyzed by real-time polymerase chain reaction. Murine OA was induced by surgical destabilization of the medial meniscus, and matriptase inhibitors were administered via osmotic minipump or intraarticular injection. Cartilage damage was scored histologically and aggrecan cleavage was visualized immunohistochemically using specific neoepitope antibodies. RESULTS: The addition of soluble recombinant matriptase promoted a time-dependent release of aggrecan (and collagen) from OA cartilage, which was sensitive to metalloproteinase inhibition and protease-activated receptor 2 antagonism. Although engineered human (normal) cartilage discs failed to release aggrecan following matriptase addition, both matrix metalloproteinase- and aggrecanase-mediated cleavages of aggrecan were detected in human OA cartilage. Additionally, while matriptase did not directly degrade aggrecan, it promoted the accumulation of low-density lipoprotein receptor-related protein 1 (LRP-1) in conditioned media of the OA cartilage explants. Matriptase inhibition via neutralizing antibody or small molecule inhibitor significantly reduced cartilage damage scores in murine OA, which was associated with reduced generation of metalloproteinase-mediated aggrecan cleavage. CONCLUSION: Matriptase potently induces the release of metalloproteinase-generated aggrecan fragments as well as soluble LRP-1 from OA cartilage. Therapeutic targeting of matriptase proteolytic activity reduces metalloproteinase activity, further suggesting that this serine proteinase may have potential as a disease-modifying therapy in OA.
Assuntos
Agrecanas/efeitos dos fármacos , Cartilagem Articular/efeitos dos fármacos , Osteoartrite do Joelho/metabolismo , Serina Endopeptidases/farmacologia , Proteína ADAMTS4/efeitos dos fármacos , Proteína ADAMTS4/metabolismo , Proteína ADAMTS5/efeitos dos fármacos , Proteína ADAMTS5/metabolismo , Idoso , Idoso de 80 Anos ou mais , Agrecanas/metabolismo , Animais , Anticorpos Neutralizantes/farmacologia , Western Blotting , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Endopeptidases/efeitos dos fármacos , Endopeptidases/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/efeitos dos fármacos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Masculino , Metaloproteinases da Matriz/efeitos dos fármacos , Metaloproteinases da Matriz/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Meniscos Tibiais/cirurgia , Camundongos , Pessoa de Meia-Idade , Osteoartrite do Joelho/patologia , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/farmacologia , Serina Endopeptidases/metabolismoRESUMO
Increasing evidence implicates serine proteinases in the proteolytic cascades leading to the pathological destruction of extracellular matrices such as cartilage in osteoarthritis (OA). We have previously demonstrated that the type II transmembrane serine proteinase (TTSP) matriptase acts as a novel initiator of cartilage destruction via the induction and activation of matrix metalloproteinases (MMPs). Hepsin is another TTSP expressed in OA cartilage such that we hypothesized this proteinase may also contribute to matrix turnover. Herein, we demonstrate that addition of hepsin to OA cartilage in explant culture induced significant collagen and aggrecan release and activated proMMP-1 and proMMP-3. Furthermore, hepsin directly cleaved the aggrecan core protein at a novel cleavage site within the interglobular domain. Hepsin expression correlated with synovitis as well as tumour necrosis factor α expression, and was induced in cartilage by a pro-inflammatory stimulus. However, a major difference compared to matriptase was that hepsin demonstrated markedly reduced capacity to activate proteinase-activated receptor-2. Overall, our data suggest that hepsin, like matriptase, induces potent destruction of the extracellular matrix whilst displaying distinct efficiencies for the cleavage of specific substrates.
Assuntos
Matriz Extracelular/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Serina Endopeptidases/metabolismo , Agrecanas/metabolismo , Animais , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Bovinos , Células Cultivadas , Colágeno/metabolismo , Humanos , Metaloproteinase 1 da Matriz/química , Metaloproteinase 3 da Matriz/química , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Dinâmica Molecular , Osteoartrite/metabolismo , Osteoartrite/patologia , Estrutura Terciária de Proteína , Receptor PAR-2/metabolismo , Serina Endopeptidases/química , Sinovite/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The matrix metalloproteinases (MMPs) comprise a family of enzymes that collectively can degrade all components of the extracellular matrix (ECM). MMPs play an important role in many physiological processes such as embryonic development and growth, tissue remodelling and repair. Overexpression and activation of MMPs contributes to many pathologies, including arthritis, cardiovascular disease, tumour progression and lung disease. Targeted mutagenesis has allowed investigators to examine the contribution of MMPs to these physiological and pathologic processes. In this manuscript, we will present an up-to date review of these studies. Rheumatoid arthritis (RA) and osteoarthritis (OA) are chronic diseases that result in cartilage degradation and loss of joint function. MMPs have been implicated in the collagen breakdown that contributes to joint destruction. Current available drugs to treat arthritis are predominantly directed towards the control of pain and/or the inflammation associated with joint synovitis but they do little to reduce joint destruction. Synthetic MMP inhibitors have been developed and in animal models of OA and/or RA, these agents have shown chondroprotective effects. However, results from clinical trials in RA have been equivocal, with some studies being terminated because of lack of efficacy or safety concerns. Increased understanding of the structure, regulation and function of individual MMPs may lead to more effective strategies. Approaches aimed at multiple steps of the pathogenesis of arthritis may be needed to break the chronic cycle of joint destruction. In the future, it will be important to have drugs that prevent the structural damage caused by bone and cartilage breakdown.
Assuntos
Metaloproteinases da Matriz/fisiologia , Inibidores de Proteases/uso terapêutico , Doenças Reumáticas/tratamento farmacológico , Animais , Tecido Conjuntivo/patologia , Humanos , Inibidores de Metaloproteinases de Matriz , Metaloproteinases da Matriz/biossíntese , Metaloproteinases da Matriz/genética , Camundongos , Camundongos Knockout , Doenças Reumáticas/patologiaRESUMO
Dysregulated proteolysis of the extracellular matrix of articular cartilage represents a unifying hallmark of the arthritides, and has been a target for therapeutic intervention for some time, although clinical efficacy has been elusive. Members of the 'A disintegrin and metalloprotease with thrombospondin motifs' and matrix metalloprotease families are considered to be collectively responsible for cartilage catabolism, such that inhibition of these activities is theoretically a highly attractive strategy for preventing further proteolytic damage. This review outlines the biology of these metalloproteases and what we have learnt from inhibition studies and transgenics, and highlights the important questions that this information raises for the future development of therapeutics directed towards metalloproteases for arthritis treatment.
Assuntos
Artrite/tratamento farmacológico , Artrite/enzimologia , Metaloproteases/antagonistas & inibidores , Metaloproteases/metabolismo , Animais , Artrite/imunologia , Humanos , Metaloproteases/genética , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêuticoRESUMO
Excess proteolysis of the extracellular matrix (ECM) of articular cartilage is a key characteristic of arthritis. The main enzymes involved belong to the metalloproteinase family, specifically the matrix metalloproteinases (MMPs) and a group of proteinases with a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS). Chondrocytes are the only cell type embedded in the cartilage ECM, and cell-matrix interactions can influence gene expression and cell behaviour. Thus, although the use of monolayer cultures can be informative, it is essential to study chondrocytes encapsulated within their native environment, cartilage, to fully assess cellular responses. The aim of this study was to profile the temporal gene expression of metalloproteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), reversion-inducing cysteine-rich protein with Kazal motifs (RECK), and alpha2-macroglobulin (alpha2M), in actively resorbing cartilage. The addition of the pro-inflammatory cytokine combination of interleukin-1 (IL-1) + oncostatin M (OSM) to bovine nasal cartilage induces the synthesis and subsequent activation of pro-metalloproteinases, leading to cartilage resorption. We show that IL-1+OSM upregulated the expression of MMP-1, -2, -3, -9, 12, -13, -14, TIMP-1, and ADAMTS-4, -5, and -9. Differences in basal expression and the magnitude of induction were observed, whilst there was no significant modulation of TIMP-2, -3, RECK, or ADAMTS-15 gene expression. IL-1+OSM downregulated MMP-16,TIMP-4, and alpha2M expression. All IL-1+OSM-induced metalloproteinases showed marked upregulation early in the culture period, whilst inhibitor expression was reduced throughout the stimulation period such that metalloproteinase production would be in excess of inhibitors. Moreover, although pro-collagenases were upregulated and synthesized early (by day 5), collagenolysis became apparent later with the presence of active collagenases (day 10) when inhibitor levels were low. These findings indicate that the activation cascades for pro-collagenases are delayed relative to collagenase expression, further confirm the coordinated regulation of metalloproteinases in actively resorbing cartilage, and support the use of bovine nasal cartilage as a model system to study the mechanisms that promote cartilage degradation.
Assuntos
Cartilagem/fisiologia , Metaloproteases/genética , Metaloproteases/metabolismo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Cartilagem/citologia , Bovinos , Colágeno/metabolismo , Regulação para Baixo/fisiologia , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/fisiologia , Homeostase/fisiologia , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Metaloproteinase 16 da Matriz/genética , Metaloproteinase 16 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Septo Nasal/citologia , Técnicas de Cultura de Órgãos , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo , Regulação para Cima/fisiologiaRESUMO
Arthritis is characterised by the proteolytic degradation of articular cartilage leading to a loss of joint function. Articular cartilage is composed of an extracellular matrix of proteoglycans and collagens. We have previously shown that serine proteinases are involved in the activation cascades leading to cartilage collagen degradation. The aim of this study was to use an active-site probe, biotinylated fluorophosphonate, to identify active serine proteinases present on the chondrocyte membrane after stimulation with the pro-inflammatory cytokines IL-1 and oncostatin M (OSM), agents that promote cartilage resorption. Fibroblast activation protein alpha (FAPalpha), a type II integral membrane serine proteinase, was identified on chondrocyte membranes stimulated with IL-1 and OSM. Real-time PCR analysis shows that FAPalpha gene expression is up-regulated by this cytokine combination in both isolated chondrocytes and cartilage explant cultures and is significantly higher in cartilage from OA patients compared to phenotypically normal articular cartilage. Immunohistochemistry analysis shows FAPalpha expression on chondrocytes in the superficial zone of OA cartilage tissues. This is the first report demonstrating the expression of active FAPalpha on the chondrocyte membrane and elevated levels in cartilage from OA patients. Its cell surface location and expression profile suggest that it may have an important pathological role in the cartilage turnover prevalent in arthritic diseases.