Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Eur J Neurosci ; 36(2): 2164-77, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22805062

RESUMO

Epileptic seizures, epileptic spikes and high-frequency oscillations (HFOs) are recognized as three electrophysiological markers of epileptogenic neuronal systems. It can be reasonably hypothesized that distinct (hyper)excitability mechanisms underlie these electrophysiological signatures. The question is 'What are these mechanisms?'. Solving this difficult question would considerably help our understanding of epileptogenic processes and would also advance our interpretation of electrophysiological signals. In this paper, we show how computational models of brain epileptic activity can be used to address this issue. With a special emphasis on the hippocampal activity recorded in various experimental models (in vivo and in vitro) as well as in epileptic patients, we confront results and insights we can get from computational models lying at two different levels of description, namely macroscopic (neural mass) and microscopic (detailed network of neurons). At each level, we show how spikes, seizures and HFOs can (or cannot) be generated depending on the model features. The replication of observed signals, the prediction of possible mechanisms as well as their experimental validation are described and discussed; as are the advantages and limitations of the two modelling approaches.


Assuntos
Potenciais de Ação/fisiologia , Ondas Encefálicas/fisiologia , Epilepsia do Lobo Temporal/fisiopatologia , Modelos Neurológicos , Convulsões/fisiopatologia , Animais , Região CA1 Hipocampal/fisiologia , Cobaias , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
PLoS One ; 12(3): e0174462, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350887

RESUMO

Auditory steady state responses (ASSRs) in cochlear implant (CI) patients are contaminated by the spread of a continuous CI electrical stimulation artifact. The aim of this work was to model the electrophysiological mixture of the CI artifact and the corresponding evoked potentials on scalp electrodes in order to evaluate the performance of denoising algorithms in eliminating the CI artifact in a controlled environment. The basis of the proposed computational framework is a neural mass model representing the nodes of the auditory pathways. Six main contributors to auditory evoked potentials from the cochlear level and up to the auditory cortex were taken into consideration. The simulated dynamics were then projected into a 3-layer realistic head model. 32-channel scalp recordings of the CI artifact-response were then generated by solving the electromagnetic forward problem. As an application, the framework's simulated 32-channel datasets were used to compare the performance of 4 commonly used Independent Component Analysis (ICA) algorithms: infomax, extended infomax, jade and fastICA in eliminating the CI artifact. As expected, two major components were detectable in the simulated datasets, a low frequency component at the modulation frequency and a pulsatile high frequency component related to the stimulation frequency. The first can be attributed to the phase-locked ASSR and the second to the stimulation artifact. Among the ICA algorithms tested, simulations showed that infomax was the most efficient and reliable in denoising the CI artifact-response mixture. Denoising algorithms can induce undesirable deformation of the signal of interest in real CI patient recordings. The proposed framework is a valuable tool for evaluating these algorithms in a controllable environment ahead of experimental or clinical applications.


Assuntos
Artefatos , Córtex Auditivo/fisiopatologia , Implantes Cocleares/normas , Potenciais Evocados Auditivos , Estimulação Acústica , Algoritmos , Análise de Variância , Vias Auditivas/fisiopatologia , Implante Coclear , Biologia Computacional/métodos , Simulação por Computador , Eletroencefalografia , Perda Auditiva/fisiopatologia , Perda Auditiva/terapia , Humanos , Modelos Neurológicos
3.
IEEE Trans Neural Syst Rehabil Eng ; 25(12): 2453-2460, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28692981

RESUMO

Auditory evoked potentials are of great interest to objectively evaluate the audition in cochlear implant (CI) recipients. However, these measures are impeded by CI stimulation electrical artifacts present in the EEG. In the first part, this paper investigates the use of a hybrid model approximating CI patient data. This model gives access to both uncontaminated and denoised data, thus allowing for the evaluation of CI artifact removal methods. Here the efficiency of independent component analysis (ICA) is evaluated in the context of auditory steady-state responses (ASSRs). A dedicated experimental setup was developed to simultaneously record EEG data from a normal hearing (NH) participant and CI artifact data from a phantom equipped with a CI. Hybrid data were obtained as a linear mixture of both sources. Amplitude-modulated continuous tones were used as stimuli to elicit ASSRs. After denoising, the comparison of denoised hybrid data and original NH data showed high correlations between the two datasets, demonstrating the efficiency of ICA. In the second part, the ICA was applied to real clinical CI ASSR data. Results support the usefulness of the methodology as regards the performance evaluation of signal processing methods applied to CI patient data prior to clinical application.


Assuntos
Algoritmos , Artefatos , Implantes Cocleares , Potenciais Evocados Auditivos/fisiologia , Adulto , Idoso , Simulação por Computador , Surdez/terapia , Eletroencefalografia/estatística & dados numéricos , Humanos , Modelos Lineares , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Análise de Componente Principal , Resultado do Tratamento
4.
Sci Rep ; 7(1): 1708, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28490738

RESUMO

Neurostimulation is an emerging treatment for drug-resistant epilepsies when surgery is contraindicated. Recent clinical results demonstrate significant seizure frequency reduction in epileptic patients, however the mechanisms underlying this therapeutic effect are largely unknown. This study aimed at gaining insights into local direct current stimulation (LDCS) effects on hyperexcitable tissue, by i) analyzing the impact of electrical currents locally applied on epileptogenic brain regions, and ii) characterizing currents achieving an "anti-epileptic" effect (excitability reduction). First, a neural mass model of hippocampal circuits was extended to accurately reproduce the features of hippocampal paroxysmal discharges (HPD) observed in a mouse model of epilepsy. Second, model predictions regarding current intensity and stimulation polarity were confronted to in vivo mice recordings during LDCS (n = 8). The neural mass model was able to generate realistic hippocampal discharges. Simulation of LDCS in the model pointed at a significant decrease of simulated HPD (in duration and occurrence rate, not in amplitude) for cathodal stimulation, which was successfully verified experimentally in epileptic mice. Despite the simplicity of our stimulation protocol, these results contribute to a better understanding of clinical benefits observed in epileptic patients with implanted neurostimulators. Our results also provide further support for model-guided design of neuromodulation therapy.


Assuntos
Potenciais de Ação/fisiologia , Hipocampo/fisiologia , Modelos Neurológicos , Animais , Simulação por Computador , Estimulação Elétrica , Eletrodos , Camundongos , Probabilidade , Processamento de Sinais Assistido por Computador
5.
Artigo em Inglês | MEDLINE | ID: mdl-23882212

RESUMO

A number of studies showed that deep brain stimulation (DBS) can modulate the activity in the epileptic brain and that a decrease of seizures can be achieved in "responding" patients. In most of these studies, the choice of stimulation parameters is critical to obtain desired clinical effects. In particular, the stimulation frequency is a key parameter that is difficult to tune. A reason is that our knowledge about the frequency-dependant mechanisms according to which DBS indirectly impacts the dynamics of pathological neuronal systems located in the neocortex is still limited. We address this issue using both computational modeling and intracerebral EEG (iEEG) data. We developed a macroscopic (neural mass) model of the thalamocortical network. In line with already-existing models, it includes interconnected neocortical pyramidal cells and interneurons, thalamocortical cells and reticular neurons. The novelty was to introduce, in the thalamic compartment, the biophysical effects of direct stimulation. Regarding clinical data, we used a quite unique data set recorded in a patient (drug-resistant epilepsy) with a focal cortical dysplasia (FCD). In this patient, DBS strongly reduced the sustained epileptic activity of the FCD for low-frequency (LFS, < 2 Hz) and high-frequency stimulation (HFS, > 70 Hz) while intermediate-frequency stimulation (IFS, around 50 Hz) had no effect. Signal processing, clustering, and optimization techniques allowed us to identify the necessary conditions for reproducing, in the model, the observed frequency-dependent stimulation effects. Key elements which explain the suppression of epileptic activity in the FCD include: (a) feed-forward inhibition and synaptic short-term depression of thalamocortical connections at LFS, and (b) inhibition of the thalamic output at HFS. Conversely, modeling results indicate that IFS favors thalamic oscillations and entrains epileptic dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA