RESUMO
Ferroptosis, a newly emerged form of regulated necrotic cell death, has been demonstrated to play an important role in multiple diseases including cancer, neurodegeneration, and ischemic organ injury. Mounting evidence also suggests its potential physiological function in tumor suppression and immunity. The execution of ferroptosis is driven by iron-dependent phospholipid peroxidation. As such, the metabolism of biological lipids regulates ferroptosis via controlling phospholipid peroxidation, as well as various other cellular processes relevant to phospholipid peroxidation. In this review, we provide a comprehensive analysis by focusing on how lipid metabolism impacts the initiation, propagation, and termination of phospholipid peroxidation; how multiple signal transduction pathways communicate with ferroptosis via modulating lipid metabolism; and how such intimate cross talk of ferroptosis with lipid metabolism and related signaling pathways can be exploited for the development of rational therapeutic strategies.
Assuntos
Ferroptose , Ferroptose/genética , Ferro/metabolismo , Metabolismo dos Lipídeos , Peroxidação de Lipídeos , FosfolipídeosRESUMO
Ferroptosis is a regulated necrosis process driven by iron-dependent lipid peroxidation. Although ferroptosis and cellular metabolism interplay with one another, whether mitochondria are involved in ferroptosis is under debate. Here, we demonstrate that mitochondria play a crucial role in cysteine-deprivation-induced ferroptosis but not in that induced by inhibiting glutathione peroxidase-4 (GPX4), the most downstream component of the ferroptosis pathway. Mechanistically, cysteine deprivation leads to mitochondrial membrane potential hyperpolarization and lipid peroxide accumulation. Inhibition of mitochondrial TCA cycle or electron transfer chain (ETC) mitigated mitochondrial membrane potential hyperpolarization, lipid peroxide accumulation, and ferroptosis. Blockage of glutaminolysis had the same inhibitory effect, which was counteracted by supplying downstream TCA cycle intermediates. Importantly, loss of function of fumarate hydratase, a tumor suppressor and TCA cycle component, confers resistance to cysteine-deprivation-induced ferroptosis. Collectively, this work demonstrates the crucial role of mitochondria in cysteine-deprivation-induced ferroptosis and implicates ferroptosis in tumor suppression.
Assuntos
Ciclo do Ácido Cítrico , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/enzimologia , Ferro/metabolismo , Peroxidação de Lipídeos , Mitocôndrias/enzimologia , Animais , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Glutamina/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/patologia , Mutação , Necrose , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Transdução de SinaisRESUMO
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Ferroptosis, a cell death process driven by cellular metabolism and iron-dependent lipid peroxidation, has been implicated in diseases such as ischaemic organ damage and cancer1,2. The enzyme glutathione peroxidase 4 (GPX4) is a central regulator of ferroptosis, and protects cells by neutralizing lipid peroxides, which are by-products of cellular metabolism. The direct inhibition of GPX4, or indirect inhibition by depletion of its substrate glutathione or the building blocks of glutathione (such as cysteine), can trigger ferroptosis3. Ferroptosis contributes to the antitumour function of several tumour suppressors such as p53, BAP1 and fumarase4-7. Counterintuitively, mesenchymal cancer cells-which are prone to metastasis, and often resistant to various treatments-are highly susceptible to ferroptosis8,9. Here we show that ferroptosis can be regulated non-cell-autonomously by cadherin-mediated intercellular interactions. In epithelial cells, such interactions mediated by E-cadherin suppress ferroptosis by activating the intracellular NF2 (also known as merlin) and Hippo signalling pathway. Antagonizing this signalling axis allows the proto-oncogenic transcriptional co-activator YAP to promote ferroptosis by upregulating several ferroptosis modulators, including ACSL4 and TFRC. This finding provides mechanistic insights into the observations that cancer cells with mesenchymal or metastatic property are highly sensitive to ferroptosis8. Notably, a similar mechanism also modulates ferroptosis in some non-epithelial cells. Finally, genetic inactivation of the tumour suppressor NF2, a frequent tumorigenic event in mesothelioma10,11, rendered cancer cells more sensitive to ferroptosis in an orthotopic mouse model of malignant mesothelioma. Our results demonstrate the role of intercellular interactions and intracellular NF2-YAP signalling in dictating ferroptotic death, and also suggest that malignant mutations in NF2-YAP signalling could predict the responsiveness of cancer cells to future ferroptosis-inducing therapies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ferroptose , Mesotelioma/metabolismo , Mesotelioma/patologia , Neurofibromina 2/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Contagem de Células , Coenzima A Ligases/metabolismo , Células Epiteliais/metabolismo , Feminino , Células HCT116 , Via de Sinalização Hippo , Humanos , Camundongos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Receptores da Transferrina/metabolismo , Proteínas de Sinalização YAPRESUMO
Macroautophagy/autophagy, a stress-responsive cellular survival mechanism, plays important and context-dependent roles in cancer, and its inhibition has been implicated as a promising cancer therapeutic approach. The detailed mechanisms underlying the function of autophagy in cancer have not been fully understood. In this study, we show that autophagy inhibition promotes both the efficacy of chemotherapy for the treatment of glioblastoma (GBM) and therapy-induced senescence of GBM cells. As a specific cell fate characterized by permanent cell cycle arrest, senescence is also associated with the expression of a panel of specific secreted protein factors known as senescence-associated secretory phenotype (SASP). Intriguingly, we found that autophagy inhibition not only quantitatively enhanced GBM cell senescence but also qualitatively altered the spectrum of SASP. The altered SASP had increased potent activity to induce paracrine senescence of neighboring GBM cells, to skew macrophage polarization toward the anti-tumor M1 state, and to block the recruitment of pro-tumor neutrophils to GBM tumor tissues. Taken together, this study reveals novel functional communication between autophagy and senescence and suggests cancer therapeutic approaches harnessing autophagy blockage in inducing senescence-mediated antitumor immunity.
Assuntos
Autofagia , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Senescência Celular/fisiologiaRESUMO
Gastric cancer is the third most common cause of cancer-related death worldwide. Diffuse-type gastric cancer (DGC) is a particularly aggressive subtype that is both difficult to detect and treat. DGC is distinguished by weak cell-cell cohesion, most often due to loss of the cell adhesion protein E-cadherin, a common occurrence in highly invasive, metastatic cancer cells. In this study, we demonstrate that loss-of-function mutation of E-cadherin in DGC cells results in their increased sensitivity to the non-apoptotic, iron-dependent form of cell death, ferroptosis. Homophilic contacts between E-cadherin molecules on adjacent cells suppress ferroptosis through activation of the Hippo pathway. Furthermore, single nucleotide mutations observed in DGC patients that ablate the homophilic binding capacity of E-cadherin reverse the ability of E-cadherin to suppress ferroptosis in both cell culture and xenograft models. Importantly, although E-cadherin loss in cancer cells is considered an essential event for epithelial-mesenchymal transition and subsequent metastasis, we found that circulating DGC cells lacking E-cadherin expression possess lower metastatic ability, due to their increased susceptibility to ferroptosis. Together, this study suggests that E-cadherin is a biomarker predicting the sensitivity to ferroptosis of DGC cells, both in primary tumor tissue and in circulation, thus guiding the usage of future ferroptosis-inducing therapeutics for the treatment of DGC.
Assuntos
Ferroptose , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patologia , Caderinas/genética , Biomarcadores , MutaçãoRESUMO
Induction of ferroptosis has emerged as a potential cancer therapeutic approach. In this issue of Cell Chemical Biology, Zhang et al. (2019) demonstrate the anticancer efficacy and safety of the ferroptosis inducer imidazole ketone erastin (IKE) in a xenograft model by using a nanoparticle-based delivery system.