RESUMO
Reaction of Zn(NO3 )2 â 6H2 O, maleic acid (H2 mal) and trans-4-(1-naphthylvinyl)pyridine (trans-nvp) in the dark results in the formation of a one-dimensional coordination polymer (1D CP) [Zn(mal)(trans-nvp)] (1), which is photosalient in nature. The crystals of 1 pop violently under UV light and moderately in sunlight, and generate cyclobutane ligands. However, the same reaction mixture kept in visible light exhibits the rare example of inâ situ isomerization of both ligands: cis-trans transformation of maleate and trans-cis isomerization of the nvp ligands, and subsequent formation of another 1D CP [Zn(fum)(cis-nvp)2 (H2 O)2 ] (2, H2 fum=fumaric acid), which is found to be photoinert. Thus, altering the reaction condition from dark to visible light gives rise to photosalient to photoinert crystals.
RESUMO
A Zn(II) based two-dimensional metal-organic framework (2D MOF) [Zn2(suc)2(4-nvp)2] (1) [H2suc = succinic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine] exhibits a "photosalient effect" under UV light as well as sunlight along with the release of a stereoselective cyclobutane ligand, 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane (rctt-4-pncb). Photolysis of in situ generated MOF in solution also leads to the formation of rctt-4-pncb crystals. Interestingly, compound 1 shows a high selectivity for Pd(II) sensing in aqueous medium.
RESUMO
A photoactive two-dimensional metal-organic framework (2D MOF) [Zn(4-spy)(DCTP)]n (1) [where 4-spy = 4-styrylpyridine and H2DCTP = 2,5-dichloroterephthalic acid] undergoes photochemical [2 + 2] cycloaddition on UV irradiation to obtain three-dimensional (3D) MOF [Zn(rctt-4-ppcb)(DCTP)]n (2) [rctt-4-ppcb = 1,3-bis(4'-pyridyl)-2,4-bis(phenyl)cyclobutane] in a single-crystal to single-crystal (SCSC) manner. This structural transformation leads to stronger halogen···halogen interaction that is well-corroborated by density functional theory (DFT) calculations.
RESUMO
Four new Cu(II)-based hexagonal complexes with the metallomacrocycle formulae [Cu6(5-nip)6(3-py)6(H2O)12] (1), [Cu6(5-nip)6(3-Clpy)6(H2O)12] (2), [Cu6(5-nip)6(3-Brpy)6(H2O)12] (3), and [Cu6(5-nip)6(3-Ipy)6(H2O)12] (4) have been synthesized using 5-nitroisophthalic acid (H25-nip) and pyridine (py)/3-halopyridine (3-Xpy; X = Cl, Br, and I) ligands. The structural features and supramolecular interactions of compounds 1-4 have been investigated using the single-crystal X-ray diffraction (SCXRD) technique. Interestingly, the hexagonal complexes undergo hydrogen bonding and π···π stacking interactions to form fascinating two-dimensional (2D) honeycomb-like structures. The synthesized complexes exhibit high electrical conductivity, arising from charge transport through space via π···π contacts. However, complexes containing 3-Brpy (3) and 3-Ipy (4) exhibit photosensitivity due to the presence of halogens with a larger size and lower ionization energy. The conductivity results are also in accordance with the theoretical prediction calculated by density functional theory (DFT) study.
Assuntos
Cobre , Cobre/química , Modelos Moleculares , Cristalografia por Raios X , Ligantes , Ligação de HidrogênioRESUMO
A novel mixed ligand one-dimensional coordination polymer (1D CP), {[Cd2(adc)2(4-nvp)6]·(MeOH)·(H2O)} n (1; H2adc = 9,10-anthracenedicarboxylic acid, and 4-nvp = 4-(1-naphthylvinyl)pyridine), has been synthesized and structurally characterized by single crystal X-ray crystallography. The 1D polymer undergoes supramolecular aggregation via hydrogen bonding, C-H···π, and π···π interactions. Interestingly, compound 1 shows increasing conductivity upon irradiation of light. Therefore, it has the potential to be used in optoelectronic devices. Moreover, the supramolecular assembly of 1 specifically detects Cr3+ cation in the presence of other competitive analytes. Most importantly, compound 1 exhibits fascinating turn-on Cr3+ sensing, which seems to be an ornament in the field of sensing application.
RESUMO
A metal-organic compound [Cd(quin)2(4-nvp)2] [1; Hquin = quinoline-2-carboxylic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine] undergoes topochemical [2 + 2] cycloaddition by sunlight irradiation to generate a one-dimensional coordination polymer. This reaction is thermally reversible, and switching between two crystalline forms can be monitored by conductivity measurements.
RESUMO
A pair of 4-(1-naphthylvinyl)pyridine (4-nvp) ligands has been successfully aligned in head-to-tail fashion in a one-dimensional (1D) double chain ladder polymer [Cd(adc)(4-nvp)2(H2O)] n (1; H2adc = acetylenedicarboxylic acid) that undergoes a photochemical [2 + 2] cycloaddition reaction accompanied by single-crystal to single-crystal (SCSC) structural transformation from a 1D chain to a 2D layer structure. These structural changes have a significant impact on the conductivity and Schottky nature of the compound.
RESUMO
The flexible Schiff-base compound 2,2'-((1,4-phenylenebis-(methylene))bis(sulfanediyl))bis(N-(pyridin-4-ylmethylene)aniline) (1; pbbpa) has been synthesized by a two-step synthetic procedure and characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD) pattern and single crystal X-ray diffraction (SCXRD) technique. The compound exhibits electrical conductivity in the semiconducting region, as revealed by band gap calculation and further confirmed by density functional theory (DFT) computations. Interestingly, the compound formed a Schottky interface with aluminum (Al) metal, which is supported by the impedance spectroscopy (IS)-based network analysis. Besides, SCXRD of compound 1 reveals the formation of a one-dimensional (1D) water chain encapsulated by the hydrogen bonded supramolecular network.
RESUMO
The emergence of materials that can effectively convert photon energy (light) into motion (mechanical work) and change their shapes on command is of great interest for their potential in the fabrication of devices (powered by light) that will revolutionize the technologies of optical actuators, smart medical devices, soft robotics, artificial muscles and flexible electronics. Recently, metal-organic crystals have emerged as desirable smart hybrid materials that can hop, split and jump. Thus, their incorporation into polymer host objects can control movement from molecules to millimetres, opening up a new world of light-switching smart materials. This feature article briefly summarizes the recent part of the fast-growing literature on photomechanical properties in metal-organic crystals, such as coordination compounds, coordination polymers (CPs), and metal-organic frameworks (MOFs). The article highlights the contributions of our group along with others in this area and aims to provide a consolidated idea of the engineering strategies and structure-property relationships of these hybrid materials for such rare phenomena with diverse potential applications.
RESUMO
The interaction between light and materials produces a range of phenomena within molecular systems, leading to advanced applications in the field of materials science. In this regard, metal-organic framework (MOF) materials have become superior candidates to others because of their easy tailor-made synthetic methods via incorporation of photoactive moieties into their structural assembly. Photoresponsive MOFs exhibit a massive variety of exciting properties, including photochromism, photomagnetism, photoluminescence, photon up or down conversion, photoconductivity, nonlinear optical properties, photosalient effects and photoinduced switching of conformations. These photoresponsive properties of MOFs regulate different potential applications, such as on-demand gas sorption and separation, optical sensing, fabrication of photoactuators and photosensing electronic devices, dye degradation, catalysis, cargo delivery, ink-free erasable printing, bio-imaging and drug delivery in biological systems. Therefore, judicious crystal engineering along with an understanding of their structure-property relationship will lead to the fabrication of desired photosensitive MOFs. Herein, we attempted to incorporate categorical descriptions based on advanced applications of photoresponsive MOFs considering a wide range of recent publications.
RESUMO
Herein, we report the synthesis of a Pb(II) based three-dimensional coordination polymer (3D CP), [Pb(DCTP)]n (1) [H2DCTP = 2,5-dichloroterephthalic acid] with an unprecedented topology, which exhibits a photomechanical effect wherein crystals show jumping upon UV irradiation. The Pb(II) CP forms a type II Clâ¯Cl interaction, which weakens further upon UV irradiation to resolve the anisotropic mechanical strain. The work presented here could be a beacon to the nascent field of photoactuating smart materials.
RESUMO
Explosive nitroaromatic compounds (epNACs) are a group of chemicals that have caused significant human casualties through terrorist attacks and they also pose health risks. For the benefit of homeland security and environmental health, there is room for advancing research on the precise detection of epNACs. Coordination polymers (CPs) successfully serve this purpose because of their binding abilities and quenching capabilities. In this regard, a one-dimensional (1D) CP [Zn(bdc)(avp)2(H2O)]n (1; H2bdc = 1,4-benzenedicarboxylic acid and avp = 4-[2-(9-anthryl)vinyl]pyridine) was synthesized, which remarkably demonstrated extremely efficient ratiometric and selective sensing capacity toward epNACs and the mutagenic pollutant 2,4,6-trinitrophenol (TNP) with a quick response. Density functional theory (DFT) calculations provided a thorough analysis of the mechanistic routes behind the quenching reaction. Herein, geometrically accessible interaction sites were strategically decorated using anthracene moieties, allowing the quick and precise detection of explosive nitro derivatives and the carcinogenic pollutant TNP with increased sensitivity.
RESUMO
The development and utilization of coordination polymers (CPs) have drawn interest for potential applications in different fields. Detection of metal ions in efficient and selective manners is an important field of research. It paves the way to protect human health by balancing toxic metal ions and biologically active metal ions in the atmosphere. In this regard, a new one-dimensional (1D) 4-(1-naphthylvinyl)pyridine (4-nvp) based CP [Cd(NCS)2(4-nvp)2]n (1) was synthesized and characterized structurally by single-crystal X-ray diffraction. Interestingly, this 1D CP underwent supramolecular aggregation via πâ¯π stacking interactions, which specifically generated an environment for a potent "turn on" response in the presence of trivalent cations (Fe3+, Al3+, and Cr3+) in the nanomolar range but remained silent in the presence of other metal ions. Density functional theory (DFT) computations and X-ray photoelectron spectroscopy (XPS) were performed to establish the sensing phenomena. Fascinatingly, utilizing the sensitivity of 1 in an aqueous medium, a hands-on portable cotton swab kit was developed for instant identification of these three important trivalent metal cations.
RESUMO
In this study, we have synthesized two zinc(II)-based metal-organic frameworks (MOFs) designated as [Zn(4-nvp)(bdc)]·(MeOH) (1) and [Zn2(4-nvp)2(bpdc)2]·(DMF) (2) [4-nvp = 4-(1-Naphthylvinyl) pyridine, H2bdc = 1,4-benzendicarboxylic acid and H2bpdc = 4,4'-biphenyldicarboxylic acid]. Single-crystal X-ray diffraction (SCXRD) of both compounds unveiled an interesting paddle-wheel [Zn2(O2C-C)4] secondary building unit composed of dinuclear Zn (II) centers and four dicarboxylate groups with a (4,4) square grid topology. These SBUs are interconnected giving rise to an infinite 2D layer architecture. Notably, the grid structure is composed of MeOH molecules in compound 1 and DMF molecules in compound 2, both of them arranged in a free lattice. In both compounds, 3D supramolecular architecture is ultimately formed through the stacking of 2D layers. Since the length of the bpdc ligand is higher than that of the bdc ligand, the solvent-accessible void volume is comparatively higher for compound 2. To corroborate all non-bonded interactions, Hirshfeld analysis was carried out for synthesized compounds. DNA binding application was extensively investigated through docking study. Results indicated that the synthesized compounds have strong affinities towards DNA via DNA groove binding. Henceforth, the synthesized compounds 1 and 2 would open the door for their potential applications as particular protein binders and bioactive substances.
RESUMO
The design and synthesis of electrically conductive coordination polymers (CPs) are of special interest due to their applications in the fabrication of many environmentally benign emerging technologies, such as molecular wires, photovoltaic cells, light emitting diodes (LEDs), field effect transistors (FETs) and Schottky barrier diodes (SBDs). Owing to their structural flexibility, easy functionality and adjustable energy levels, CPs are promising candidates for providing a better pathway for superior charge transport. Again, the utilization of visible light as an external stimulus to control and manoeuvre the electrical properties of the CPs is exceptionally motivating for the development of many optoelectronic devices, such as photodetectors, photo-switches, photodiodes and chemiresistive sensors. The applications of such materials in devices will solve questions regarding the energy crisis and environmental concerns. This study provides an overview of the recent advances in the development of photo-responsive CPs and the possibility of their application in developing optoelectronic devices. In this regard, a thorough literature survey was performed and the studies related to the fabrication of photosensitive conducting CPs for applications in optoelectronic devices are listed.
RESUMO
Dynamic photoactuating crystals have become a sensation due to their potential applications in developing smart medical devices, molecular machines, artificial muscles, flexible electronics actuators, probes and microrobots. Here we report the synthesis of two iso-structural metal-organic crystals, [Zn(4-ohbz)2(4-nvp)2] (1) and [Cd(4-ohbz)2(4-nvp)2] (2) {H4-ohbz = 4-hydroxy benzoic acid; 4-nvp = 4-(1-naphthylvinyl)pyridine} which undergo topochemical [2 + 2] cycloaddition under UV irradiation as well as sunlight to generate a dimerized product of discrete metal-complex [Zn(4-ohbz)2(rctt-4-pncb)] {rctt-4-pncb = 1,3-bis(4'-pyridyl)-2,4-bis(naphthyl)cyclobutane} (1') and one-dimensional coordination polymer (1D CP) [Cd(4-ohbz)2(rctt-4-pncb)] (2') respectively, in a single-crystal-to-single-crystal (SCSC) process. The Zn-based compound demonstrates photosalient behaviour, wherein crystals show jumping, splitting, rolling, and swelling upon UV irradiation. However, the Cd-based crystals do not show such behaviour maintaining the initial supramolecular packing and space group. Thus the photomechanical behaviour can be induced by choosing a suitable metal ion. The above findings are thoroughly validated by quantitative density functional theory (DFT) calculations which show that the Zn-based crystal shifts towards an orthorhombic structure to resolve the anisotropic UV-induced mechanical strain. Furthermore, the mechano-structure-property relationship has been established by complimentary nanoindentation measurements, which are in-line with the DFT-predicted single crystal values.
RESUMO
A photoactive two-dimensional coordination polymer (2D CP) [Zn2(4-spy)2(bdc)2]n (1) [4-spy = 4-styrylpyridine and H2bdc = 1,4-benzendicarboxylic acid] undergoes a photochemical [2 + 2] cycloaddition reaction upon UV irradiation. Interestingly, the crystals of 1 show different photomechanical effects, such as jumping, swelling, and splitting, during UV irradiation. In addition, the CP was employed for conductivity measurements before and after UV irradiation via current density-voltage characteristics and impedance spectroscopy, which suggest that they are semiconducting in nature and can be used as Schottky diodes. Thus, this work demonstrates the potential dual applications of a 2D CP based on photosalient and conductivity properties.
RESUMO
A Zn(II) based one-dimensional (1D) coordination polymer (CP), [Zn(cis-1,4-chdc)(4-nvp)] (1) {cis-1,4-H2chdc = cis-1,4-cyclohexanedicarboxylic acid and 4-nvp = 4-(1-naphthylvinyl)pyridine}, undergoes a solid-state photochemical [2+2] cycloaddition reaction, accompanied by mechanical motion, wherein crystals show swelling, jumping, splitting and bursting upon UV irradiation, whereas the analogous Cd(II) CP [Cd(cis-1,4-chdc)(4-nvp)] (2) does not show any such response under UV light, although it undergoes [2+2] photodimerization. The present study can certainly provide the fundamental understanding for designing smart photoactuating materials.
RESUMO
Due to the easy functionality and structural diversity of coordination polymers (CPs) coupled with superior thermal stability, many researchers have been prompted to explore the opportunity of introducing these hybrid materials as active components in various electronic devices, such as light emitting diodes (LED), solar cells, field effect transistors (FET), and Schottky barrier diodes (SBD). Therefore, the judicious selection of the structural components of CPs is directly related to their structure-property relationship and applications. One-dimensional (1D) CPs have recently emerged as excellent electrical conductors and are gaining enormous attention owing to their simple chain-like coordination arrays. In this article, we review the rational design strategies for synthesising 1D CPs and also point out the structural factors that affect the charge transport properties as well as the electrical conductivity of these materials.
RESUMO
Some special crystals respond to light by jumping, scattering or bursting just like popping of popcorn kernels on a hot surface. This rare phenomenon is called the photosalient (PS) effect. Molecular level control over the arrangement of light-responsive molecules in microscopic crystals for macroscale deformation or mechanical motion offers the possibility of using light to control smart material structures across the length scales. Photochemical [2+2] cycloaddition has recently emerged as a promising route to obtain photoswitchable structures and a wide variety of frameworks, but such reaction in crystals leading to macroscopic mechanical motion is relatively less explored. Study of chemistry of such novel soft crystals for the generation of smart materials is an imperative task. This minireview highlights recent advances in solid-state [2+2] cycloaddition in crystals to induce macroscale mechanical motion and thereby transduction of light into kinetic energy.