Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microcirculation ; 29(3): e12756, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35289024

RESUMO

OBJECTIVE: The myogenic response sets the foundation for blood flow control. Recent findings suggest a role for G protein-coupled receptors (GPCR) and signaling pathways tied to the generation of reactive oxygen species (ROS). In this regard, this study ascertained the impact of NADPH oxidase (Nox) on myogenic tone in rat cerebral resistance arteries. METHODS: The study employed real-time qPCR (RT-qPCR), pressure myography, and immunohistochemistry. RESULTS: Gq blockade abolished myogenic tone in rat cerebral arteries, linking GPCR to mechanosensation. Subsequent work revealed that general (TEMPOL) and mitochondrial specific (MitoTEMPO) ROS scavengers had little impact on myogenic tone, whereas apocynin, a broad spectrum Nox inhibitor, initiated transient dilation. RT-qPCR revealed Nox1 and Nox2 mRNA expression in smooth muscle cells. Pressure myography defined Nox1 rather than Nox2 is facilitating myogenic tone. We rationalized that Nox1-generated ROS was initiating this response by impairing the ability of the CaV 3.2 channel to elicit negative feedback via BKCa . This hypothesis was confirmed in functional experiments. The proximity ligation assay further revealed that Nox1 and CaV 3.2 colocalize within 40 nm of one another. CONCLUSIONS: Our data highlight that vascular pressurization augments Nox1 activity and ensuing ROS production facilitates myogenic tone by limiting Ca2+ influx via CaV 3.2.


Assuntos
Músculo Liso Vascular , NADPH Oxidases , Animais , Artérias Cerebrais/metabolismo , Músculo Liso Vascular/fisiologia , Miografia , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Sci Rep ; 13(1): 20407, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989780

RESUMO

The arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca2+] is a key determinant of constriction, tied to L-type (CaV1.2) Ca2+ channels. While important, other Ca2+ channels, particularly T-type could contribute to pressure regulation within defined voltage ranges. This study examined the role of one T-type Ca2+ channel (CaV3.1) using C57BL/6 wild type and CaV3.1-/- mice. Patch-clamp electrophysiology, pressure myography, blood pressure and Ca2+ imaging defined the CaV3.1-/- phenotype relative to C57BL/6. CaV3.1-/- mice had absent CaV3.1 expression and whole-cell current, coinciding with lower blood pressure and reduced mesenteric artery myogenic tone, particularly at lower pressures (20-60 mmHg) where membrane potential is hyperpolarized. This reduction coincided with diminished Ca2+ wave generation, asynchronous events of Ca2+ release from the sarcoplasmic reticulum, insensitive to L-type Ca2+ channel blockade (Nifedipine, 0.3 µM). Proximity ligation assay (PLA) confirmed IP3R1/CaV3.1 close physical association. IP3R blockade (2-APB, 50 µM or xestospongin C, 3 µM) in nifedipine-treated C57BL/6 arteries rendered a CaV3.1-/- contractile phenotype. Findings indicate that Ca2+ influx through CaV3.1 contributes to myogenic tone at hyperpolarized voltages through Ca2+-induced Ca2+ release tied to the sarcoplasmic reticulum. This study helps establish CaV3.1 as a potential therapeutic target to control blood pressure.


Assuntos
Canais de Cálcio Tipo T , Nifedipino , Camundongos , Animais , Nifedipino/farmacologia , Nifedipino/metabolismo , Sinalização do Cálcio , Vasoconstrição , Camundongos Endogâmicos C57BL , Artérias Mesentéricas/metabolismo , Niacinamida/metabolismo , Músculo Liso Vascular/metabolismo , Cálcio/metabolismo , Canais de Cálcio Tipo T/metabolismo
3.
Front Physiol ; 13: 1058744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457306

RESUMO

Vascular smooth muscle contraction is intimately tied to membrane potential and the rise in intracellular Ca2+ enabled by the opening of L-type Ca2+ channels. While voltage is often viewed as the single critical factor gating these channels, research is starting to reveal a more intricate scenario whereby their function is markedly tuned. This emerging concept will be the focus of this three-part review, the first part articulating the mechanistic foundation of contractile development in vascular smooth muscle. Part two will extend this foundational knowledge, introducing readers to functional coupling and how neighboring L-type Ca2+ channels work cooperatively through signaling protein complexes, to facilitate their open probability. The final aspect of this review will discuss the impact of L-type Ca2+ channel trafficking, a process tied to cytoskeleton dynamics. Cumulatively, this brief manuscript provides new insight into how voltage, along with channel cooperativity and number, work in concert to tune Ca2+ responses and smooth muscle contraction.

4.
J Cereb Blood Flow Metab ; 42(9): 1693-1706, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35410518

RESUMO

Cerebral blood flow is a finely tuned process dependent on coordinated changes in arterial tone. These changes are strongly tied to smooth muscle membrane potential and inwardly rectifying K+ (KIR) channels are thought to be a key determinant. To elucidate the role of KIR2.1 in cerebral arterial tone development, this study examined the electrical and functional properties of cells, vessels and living tissue from tamoxifen-induced smooth muscle cell (SMC)-specific KIR2.1 knockout mice. Patch-clamp electrophysiology revealed a robust Ba2+-sensitive inwardly rectifying K+ current in cerebral arterial myocytes irrespective of KIR2.1 knockout. Immunolabeling clarified that KIR2.1 expression was low in SMCs while KIR2.2 labeling was remarkably abundant at the membrane. In alignment with these observations, pressure myography revealed that the myogenic response and K+-induced dilation were intact in cerebral arteries post knockout. At the whole organ level, this translated to a maintenance of brain perfusion in SMC KIR2.1-/- mice, as assessed with arterial spin-labeling MRI. We confirmed these findings in superior epigastric arteries and implicated KIR2.2 as more functionally relevant in SMCs. Together, these results suggest that subunits other than KIR2.1 play a significant role in setting native current in SMCs and driving arterial tone.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Artérias Cerebrais/fisiologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
5.
Oxid Med Cell Longev ; 2019: 1701478, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886671

RESUMO

Hydrogen peroxide, formed in the endothelium, acts as a factor contributing to the relaxation of blood vessels. The reason for this vasodilatory effect could be modulation by H2O2 of calcium metabolism, since mobilization of calcium ions in endothelial cells is a trigger of endothelium-dependent relaxation. The aim of this work was to investigate the influence of H2O2 on the effects of Ca2+-mobilizing agonists in human umbilical vein endothelial cells (HUVEC). We have found that H2O2 in concentration range 10-100 µM increases the rise of [Ca2+]i induced by 5-hydroxytryptamine (5-HT) and carbachol and does not affect the calcium signals of ATP, agonist of type 1 protease-activated receptor SFLLRN, histamine and bradykinin. Using specific agonists of 5-HT1B and 5-HT2B receptors CGS12066B and BW723C86, we have demonstrated that H2O2 potentiates the effects mediated by these types of 5-HT receptors. Potentiation of the effect of BW723C86 can be produced by the induction of endogenous oxidative stress in HUVEC. We have shown that the activation of 5-HT2B receptor by BW723C86 causes production of reactive oxygen species (ROS). Inhibitor of NADPH oxidases VAS2870 suppressed formation of ROS and partially inhibited [Ca2+]i rise induced by BW723C86. Thus, it can be assumed that vasorelaxation induced by endogenous H2O2 in endothelial cells partially occurs due to the potentiation of the agonist-induced calcium signaling.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Peróxido de Hidrogênio/farmacologia , Receptor 5-HT1B de Serotonina/metabolismo , Receptor 5-HT2B de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Acetilcisteína/farmacologia , Benzoxazóis/farmacologia , Cálcio/metabolismo , Fluorescência , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis , Quinoxalinas , Tiofenos , Triazóis/farmacologia , Vanadatos/farmacologia
6.
Cells ; 8(2)2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30813397

RESUMO

In this study, we investigated the effects of NAD(P)H oxidase (NOX) inhibitor VAS2870 (3-benzyl-7-(2-benzoxazolyl)thio-1,2,3-triazolo[4,5-d]pyrimidine) on the histamine-induced elevation of free cytoplasmic calcium concentration ([Ca2+]i) and the secretion of von Willebrand factor (vWF) in human umbilical vein endothelial cells (HUVECs) and on relaxation of rat aorta in response to histamine. At 10 µM concentration, VAS2870 suppressed the [Ca2+]i rise induced by histamine. Inhibition was not competitive, with IC50 3.64 and 3.22 µM at 1 and 100 µM concentrations of histamine, respectively. There was no inhibition of [Ca2+]i elevation by VAS2870 in HUVECs in response to the agonist of type 1 protease-activated receptor SFLLRN. VAS2870 attenuated histamine-induced secretion of vWF and did not inhibit basal secretion. VAS2870 did not change the degree of histamine-induced relaxation of rat aortic rings constricted by norepinephrine. We suggest that NOX inhibitors might be used as a tool for preventing thrombosis induced by histamine release from mast cells without affecting vasorelaxation.


Assuntos
Benzoxazóis/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Histamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Triazóis/farmacologia , Fator de von Willebrand/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Masculino , Norepinefrina/farmacologia , Oxirredução , Fragmentos de Peptídeos/farmacologia , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA