Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 186(25): 5517-5535.e24, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-37992713

RESUMO

Transfer RNA (tRNA) modifications are critical for protein synthesis. Queuosine (Q), a 7-deaza-guanosine derivative, is present in tRNA anticodons. In vertebrate tRNAs for Tyr and Asp, Q is further glycosylated with galactose and mannose to generate galQ and manQ, respectively. However, biogenesis and physiological relevance of Q-glycosylation remain poorly understood. Here, we biochemically identified two RNA glycosylases, QTGAL and QTMAN, and successfully reconstituted Q-glycosylation of tRNAs using nucleotide diphosphate sugars. Ribosome profiling of knockout cells revealed that Q-glycosylation slowed down elongation at cognate codons, UAC and GAC (GAU), respectively. We also found that galactosylation of Q suppresses stop codon readthrough. Moreover, protein aggregates increased in cells lacking Q-glycosylation, indicating that Q-glycosylation contributes to proteostasis. Cryo-EM of human ribosome-tRNA complex revealed the molecular basis of codon recognition regulated by Q-glycosylations. Furthermore, zebrafish qtgal and qtman knockout lines displayed shortened body length, implying that Q-glycosylation is required for post-embryonic growth in vertebrates.


Assuntos
RNA de Transferência , Animais , Humanos , Ratos , Anticódon , Linhagem Celular , Códon , Glicosilação , Nucleosídeo Q/química , Nucleosídeo Q/genética , Nucleosídeo Q/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Suínos , Peixe-Zebra/metabolismo , Conformação de Ácido Nucleico
2.
EMBO J ; 41(5): e109256, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35040509

RESUMO

The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome-wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon-decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter-based analyses to define codon-mediated mRNA decay and ribosome stall-dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling-dependent mRNA decay. We propose that codon-mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.


Assuntos
Códon/genética , Estabilidade de RNA/genética , RNA Mensageiro/genética , Ribossomos/genética , Sequência de Aminoácidos , Animais , Fases de Leitura Aberta/genética , Biossíntese de Proteínas/genética , Controle de Qualidade , Peixe-Zebra/genética
3.
RNA ; 29(12): 1910-1927, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37751929

RESUMO

The ribosome is a translational apparatus that comprises about 80 ribosomal proteins and four rRNAs. Recent studies reported that ribosome ubiquitination is crucial for translational regulation and ribosome-associated quality control (RQC). However, little is known about the dynamics of ribosome ubiquitination under complex biological processes of multicellular organisms. To explore ribosome ubiquitination during animal development, we generated a zebrafish strain that expresses a FLAG-tagged ribosomal protein Rpl36/eL36 from its endogenous locus. We examined ribosome ubiquitination during zebrafish development by combining affinity purification of ribosomes from rpl36-FLAG zebrafish embryos with immunoblotting analysis. Our findings showed that the ubiquitination of ribosomal proteins dynamically changed as development proceeded. We also showed that during zebrafish development, the ribosome was ubiquitinated by Znf598, an E3 ubiquitin ligase that activates RQC. Ribosomal protein Rps10/eS10 was found to be a key ubiquitinated protein during development. Furthermore, we showed that Rps10/eS10 ubiquitination-site mutations reduced the overall ubiquitination pattern of the ribosome. These results demonstrate the complexity and dynamics of ribosome ubiquitination during zebrafish development.


Assuntos
Biossíntese de Proteínas , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ribossomos/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ubiquitinação , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
4.
Mol Cell ; 61(6): 874-85, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990990

RESUMO

The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes.


Assuntos
Regulação da Expressão Gênica/genética , Estabilidade de RNA/genética , RNA Mensageiro/biossíntese , Transcriptoma/genética , Regiões 3' não Traduzidas/genética , Animais , Códon/genética , Relações Materno-Fetais , Complexos Multiproteicos/genética , RNA Mensageiro/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Zigoto/crescimento & desenvolvimento , Zigoto/metabolismo
5.
Mol Cell ; 56(1): 79-89, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25280105

RESUMO

In animals, key functions of microRNA-induced silencing complex (miRISC) are translational repression and deadenylation followed by mRNA decay. While miRISC represses translation initiation, it is poorly understood how miRISC exerts this function. Here we assessed the effect of miRISC on synergistic recruitment of translation initiation factors to target mRNAs by using direct biochemical assays. We show that miRISC promotes eIF4AI and eIF4AII release from target mRNAs prior to dissociation of eIF4E and eIF4G in a deadenylation-independent manner. Strikingly, miRISC-induced release of eIF4AI and eIF4AII from target mRNAs and miRISC-induced inhibition of cap-dependent translation can both be counteracted by the RNA-binding protein HuD via a direct interaction of HuD with eIF4A. Furthermore, the pharmacological eIF4A inhibitor silvestrol, which locks eIF4A on mRNAs, conferred resistance to miRNA-mediated translational repression. In summary, we propose that both eIF4AI and eIF4AII are functionally important targets in miRISC-mediated translation control.


Assuntos
Fator de Iniciação 4A em Eucariotos/metabolismo , MicroRNAs/fisiologia , Modelos Genéticos , RNA Mensageiro/metabolismo , Fator de Iniciação 4A em Eucariotos/antagonistas & inibidores , Fator de Iniciação 4A em Eucariotos/genética , Células HEK293 , Humanos , Complexo de Inativação Induzido por RNA/fisiologia , Iniciação da Transcrição Genética , Triterpenos/farmacologia
6.
Genes Cells ; 22(7): 670-678, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28557307

RESUMO

mRNA degradation is a fundamental biological process that erases transcribed genetic information from cells. During maternal-to-zygotic transition of animal development, thousands of maternal mRNAs are degraded by multiple mechanisms including microRNAs and codon-mediated decay. Enzymatic requirements for maternal mRNA clearance, however, are not fully understood. Here, we analyzed a contribution of the decapping enzyme Dcp2 to maternal mRNA clearance in zebrafish by over-expressing catalytically inactive Dcp2 and performing RNA-seq analysis. As expected, Dcp2 had a widespread role in maternal mRNA clearance. Interestingly, each mRNA showed differential dependency on Dcp2-mediated decapping and Cnot7-mediated deadenylation for degradation. Correlation analysis identified several mRNA features that were associated with the observed differential dependency. Our results show pervasive yet nonuniform contributions of the decapping enzyme Dcp2 and the deadenylase Cnot7 to maternal mRNA clearance.


Assuntos
Endorribonucleases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Endorribonucleases/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética
7.
Genes Dev ; 23(5): 619-32, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19240126

RESUMO

microRNAs (miRNAs) represent approximately 4% of the genes in vertebrates, where they regulate deadenylation, translation, and decay of the target messenger RNAs (mRNAs). The integrated role of miRNAs to regulate gene expression and cell function remains largely unknown. Therefore, to identify the targets coordinately regulated by muscle miRNAs in vivo, we performed gene expression arrays on muscle cells sorted from wild type, dicer mutants, and single miRNA knockdown embryos. Our analysis reveals that two particular miRNAs, miR-1 and miR-133, influence gene expression patterns in the zebrafish embryo where they account for >54% of the miRNA-mediated regulation in the muscle. We also found that muscle miRNA targets (1) tend to be expressed at low levels in wild-type muscle but are more highly expressed in dicer mutant muscle, and (2) are enriched for actin-related and actin-binding proteins. Loss of dicer function or down-regulation of miR-1 and miR-133 alters muscle gene expression and disrupts actin organization during sarcomere assembly. These results suggest that miR-1 and miR-133 actively shape gene expression patterns in muscle tissue, where they regulate sarcomeric actin organization.


Assuntos
Actinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Sarcômeros/metabolismo , Peixe-Zebra/embriologia , Animais , Técnicas de Silenciamento de Genes , Mutação , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
J Biol Chem ; 290(13): 8331-47, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25657010

RESUMO

The CCR4-NOT complex, the major deadenylase in eukaryotes, plays crucial roles in gene expression at the levels of transcription, mRNA decay, and protein degradation. GW182/TNRC6 proteins, which are core components of the microRNA-induced silencing complex in animals, stimulate deadenylation and repress translation via recruitment of the CCR4-NOT complex. Here we report a heterologous experimental system that recapitulates the recruitment of CCR4-NOT complex by TNRC6 in S. cerevisiae. Using this system, we characterize conserved functions of the CCR4-NOT complex. The complex stimulates degradation of mRNA from the 5' end by Xrn1, in a manner independent of both translation and deadenylation. This degradation pathway is probably conserved in miRNA-mediated gene silencing in zebrafish. Furthermore, the mRNA fate modulators Dhh1 and Pat1 redundantly stimulate mRNA decay, but both factors are required for poly(A) tail-independent translation repression by tethered TNRC6A. Our tethering-based reconstitution system reveals that the conserved architecture of Not1/CNOT1 provides a binding surface for TNRC6, thereby connecting microRNA-induced silencing complex to the decapping machinery as well as the translation apparatus.


Assuntos
Autoantígenos/fisiologia , RNA Helicases DEAD-box/fisiologia , Proteínas de Ligação a RNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero/metabolismo , Regulação Fúngica da Expressão Gênica , Poliadenilação , Biossíntese de Proteínas , Interferência de RNA , Estabilidade de RNA , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
EMBO Rep ; 15(5): 489-507, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24731943

RESUMO

Although recent transcriptome analyses have uncovered numerous non-coding RNAs (ncRNAs), their functions remain largely unknown. ncRNAs assemble with proteins and operate as ribonucleoprotein (RNP) machineries, formation of which is thought to be determined by specific fundamental elements embedded in the primary RNA transcripts. Knowledge about the relationships between RNA elements, RNP machinery, and molecular and physiological functions is critical for understanding the diverse roles of ncRNAs and may eventually allow their systematic classification or "taxonomy." In this review, we catalog and discuss representative small and long non-coding RNA classes, focusing on their currently known (and unknown) RNA elements and RNP machineries.


Assuntos
RNA não Traduzido/classificação , RNA não Traduzido/genética , Sistemas CRISPR-Cas , Repressão Epigenética , Interferência de RNA , Ribonucleoproteínas/genética
10.
Development ; 139(23): 4356-64, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23132244

RESUMO

Cellular communication across tissues is an essential process during embryonic development. Secreted factors with potent morphogenetic activity are key elements of this cross-talk, and precise regulation of their expression is required to elicit appropriate physiological responses. MicroRNAs (miRNAs) are versatile post-transcriptional modulators of gene expression. However, the large number of putative targets for each miRNA hinders the identification of physiologically relevant miRNA-target interactions. Here we show that miR-1 and miR-206 negatively regulate angiogenesis during zebrafish development. Using target protectors, our results indicate that miR-1/206 directly regulate the levels of Vascular endothelial growth factor A (VegfA) in muscle, controlling the strength of angiogenic signaling to the endothelium. Conversely, reducing the levels of VegfAa, but not VegfAb, rescued the increase in angiogenesis observed when miR-1/206 were knocked down. These findings uncover a novel function for miR-1/206 in the control of developmental angiogenesis through the regulation of VegfA, and identify a key role for miRNAs as regulators of cross-tissue signaling.


Assuntos
MicroRNAs/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Comunicação Celular , Diferenciação Celular , Linhagem Celular , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , MicroRNAs/genética , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/biossíntese , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
11.
Nat Chem Biol ; 14(9): 832-833, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29988066
12.
Proc Natl Acad Sci U S A ; 109(4): 1104-9, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22232654

RESUMO

MicroRNA (miRNA) is a class of small noncoding RNA approximately 22 nt in length. Animal miRNA silences complementary mRNAs via translational inhibition, deadenylation, and mRNA degradation. However, the underlying molecular mechanisms remain unclear. A key question is whether these three outputs are independently induced by miRNA through distinct mechanisms or sequentially induced within a single molecular pathway. Here, we successfully dissected these intricate outputs of miRNA-mediated repression using zebrafish embryos as a model system. Our results indicate that translational inhibition and deadenylation are independent outputs mediated by distinct domains of TNRC6A, which is an effector protein in the miRNA pathway. Translational inhibition by TNRC6A is divided into two mechanisms: PAM2 motif-mediated interference of poly(A)-binding protein (PABP), and inhibition of 5' cap- and poly(A) tail-independent step(s) by a previously undescribed P-GL motif. Consistent with these observations, we show that, in zebrafish embryos, miRNA inhibits translation of the target mRNA in a deadenylation- and PABP-independent manner at early time points. These results indicate that miRNA exerts multiple posttranscriptional outputs via physically and functionally independent mechanisms and that direct translational inhibition is central to miRNA-mediated repression.


Assuntos
Autoantígenos/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Inativação Gênica/fisiologia , MicroRNAs/fisiologia , Modelos Biológicos , Estabilidade de RNA/fisiologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/embriologia , Motivos de Aminoácidos/genética , Animais , Autoantígenos/metabolismo , Western Blotting , Proteínas de Fluorescência Verde/metabolismo , Hibridização In Situ , Luciferases , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase em Tempo Real , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
13.
Dev Growth Differ ; 54(1): 55-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22150108

RESUMO

MicroRNAs (miRNAs) are a class of small RNAs that are approximately 22 nucleotides in length. Hundreds of miRNA genes are encoded in the animal genome, and each miRNA potentially regulates tens to hundreds of protein-coding transcripts post-transcriptionally. Experimental and bioinformatic approaches have shown widespread regulatory roles for miRNAs in metazoa including roles in cellular homeostasis and human diseases. Since the discoveries of let-7 and lin-4 miRNAs as regulators of developmental timing in Caenorhabditis elegans, functions of miRNAs in the context of animal development have been studied in many model organisms. Although miRNAs are essential to achieve complex developmental processes, the vast majority of animal miRNA functions have yet to be determined. The identification of miRNA-target interactions and the interpretation of their biological significance are often difficult due to the divergent functions of miRNAs in intricate gene regulatory networks. This review summarizes our current knowledge on miRNA functions in vertebrate development by focusing on the progress made in the vertebrate model organism zebrafish (Danio rerio). Studies of miRNA functions in this small teleost highlight several common principles underlying the functions of animal miRNAs.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Peixe-Zebra/genética , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Inativação Gênica , Genoma , Humanos , RNA/genética , Processamento Pós-Transcricional do RNA , Fatores de Tempo
14.
iScience ; 25(7): 104516, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754732

RESUMO

Cellular global translation is often measured using ribosome profiling or quantitative mass spectrometry, but these methods do not provide direct information at the level of elongating nascent polypeptide chains (NPCs) and associated co-translational events. Here, we describe pSNAP, a method for proteome-wide profiling of NPCs by affinity enrichment of puromycin- and stable isotope-labeled polypeptides. pSNAP does not require ribosome purification and/or chemical labeling, and captures bona fide NPCs that characteristically exhibit protein N-terminus-biased positions. We applied pSNAP to evaluate the effect of silmitasertib, a potential molecular therapy for cancer, and revealed acute translational repression through casein kinase II and mTOR pathways. We also characterized modifications on NPCs and demonstrated that the combination of different types of modifications, such as acetylation and phosphorylation in the N-terminal region of histone H1.5, can modulate interactions with ribosome-associated factors. Thus, pSNAP provides a framework for dissecting co-translational regulations on a proteome-wide scale.

15.
Methods Mol Biol ; 2218: 347-354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33606244

RESUMO

Many proteins are assumed to mediate post-transcriptional regulation of mRNAs. However, the lack of information about their target mRNAs and functional domains hampers the detailed analysis of their molecular function. Here we describe a method to analyze the post-transcriptional effects of proteins of interest by artificially tethering the protein to a reporter mRNA in zebrafish embryos.


Assuntos
Bioensaio/métodos , Embrião não Mamífero/fisiologia , Proteínas de Ligação a RNA/genética , RNA/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Processamento Pós-Transcricional do RNA/genética , RNA Mensageiro/genética
16.
STAR Protoc ; 1(3): 100168, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377062

RESUMO

Ribosomes often encounter obstacles during translation elongation and thus collide with each other. Disome profiling, an optimized ribosome profiling method, specifically sequences the long ribosome footprints generated from collided ribosomes produced by the ribosome pause and thus allows the survey of sites in a genome-wide manner. This protocol details the procedure from lysate preparation of human tissue cultures and zebrafish embryos to sequencing library construction. For complete details on the use and execution of this protocol, please refer to Han et al. (2020).


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Ribossomos/metabolismo , Peixe-Zebra/metabolismo , Animais , Sistemas CRISPR-Cas/genética , Humanos , Reação em Cadeia da Polimerase , RNA Guia de Cinetoplastídeos/metabolismo , RNA Ribossômico/metabolismo
17.
Cell Rep ; 31(5): 107610, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32375038

RESUMO

Ribosome movement is not always smooth and is rather often impeded. For ribosome pauses, fundamental issues remain to be addressed, including where ribosomes pause on mRNAs, what kind of RNA/amino acid sequence causes this pause, and the physiological significance of this attenuation of protein synthesis. Here, we survey the positions of ribosome collisions caused by ribosome pauses in humans and zebrafish using modified ribosome profiling. Collided ribosomes, i.e., disomes, emerge at various sites: Pro-Pro/Gly/Asp motifs; Arg-X-Lys motifs; stop codons; and 3' untranslated regions. The electrostatic interaction between the charged nascent chain and the ribosome exit tunnel determines the eIF5A-mediated disome rescue at the Pro-Pro sites. In particular, XBP1u, a precursor of endoplasmic reticulum (ER)-stress-responsive transcription factor, shows striking queues of collided ribosomes and thus acts as a degradation substrate by ribosome-associated quality control. Our results provide insight into the causes and consequences of ribosome pause by dissecting collided ribosomes.


Assuntos
Códon de Terminação/genética , Biossíntese de Proteínas/genética , Ribossomos/genética , Ribossomos/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Códon de Terminação/metabolismo , Humanos , Elongação Traducional da Cadeia Peptídica/genética , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Peixe-Zebra
18.
Curr Biol ; 16(21): 2135-42, 2006 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-17084698

RESUMO

Early in development, primordial germ cells (PGCs) are set aside from somatic cells and acquire a unique gene-expression program . The mechanisms underlying germline-specific gene expression are largely unknown. Nanos expression is required during germline development and is posttranscriptionally restricted to PGCs . Here we report that the microRNA miR-430 targets the 3' untranslated region (UTR) of nanos1 during zebrafish embryogenesis. A miR-430 target site within the nanos1 3' UTR reduces poly(A) tail length, mRNA stability, and translation. Repression is disrupted in maternal-zygotic dicer mutants (MZdicer), which lack mature miRNAs , and is restored by injection of processed miR-430. Although miR-430 represses other genes equally in germline and soma, specific regions in the nanos1 3' UTR compensate for microRNA-mediated repression in PGCs and allow germline-specific expression. We show that the 3' UTR of an additional PGC-specific gene, TDRD7, is also targeted by miR-430. These results indicate that miR-430 targets the 3' UTRs of germline genes and suggest that differential susceptibility to microRNAs contributes to tissue-specific gene expression.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , MicroRNAs/genética , RNA Mensageiro/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Dados de Sequência Molecular , Poliadenilação , Interferência de RNA , Proteínas de Ligação a RNA , Ribonuclease III/genética , Proteínas de Peixe-Zebra/genética
19.
FEBS Lett ; 592(20): 3388-3398, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30281784

RESUMO

In the zebrafish segmentation clock, hairy/enhancer of split-related genes her1, her7, and hes6 encodes components of core oscillators. Since the expression of cyclic genes proceeds rapidly in the presomitic mesoderm (PSM), these hairy-related mRNAs are subject to strict post-transcriptional regulation. In this study, we demonstrate that inhibition of the CCR4-NOT deadenylase complex lengthens poly(A) tails of hairy-related mRNAs and increases the amount of these mRNAs, which is accompanied by defective somite segmentation. In transgenic embryos, we show that EGFP mRNAs with 3'UTRs of hairy-related genes exhibit turnover similar to endogenous mRNAs. Our results suggest that turnover rates of her1, her7, and hes6 mRNAs are differently regulated by the CCR4-NOT deadenylase complex possibly through their 3'UTRs in the zebrafish PSM.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , RNA Mensageiro/genética , Somitos/metabolismo , Fatores de Transcrição/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relógios Biológicos , Padronização Corporal/genética , Exorribonucleases/genética , Exorribonucleases/metabolismo , Mesoderma/embriologia , Mesoderma/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Somitos/embriologia , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
20.
Science ; 328(5986): 1694-8, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20448148

RESUMO

Dicer is a central enzyme in microRNA (miRNA) processing. We identified a Dicer-independent miRNA biogenesis pathway that uses Argonaute2 (Ago2) slicer catalytic activity. In contrast to other miRNAs, miR-451 levels were refractory to dicer loss of function but were reduced in MZago2 (maternal-zygotic) mutants. We found that pre-miR-451 processing requires Ago2 catalytic activity in vivo. MZago2 mutants showed delayed erythropoiesis that could be rescued by wild-type Ago2 or miR-451-duplex but not by catalytically dead Ago2. Changing the secondary structure of Dicer-dependent miRNAs to mimic that of pre-miR-451 restored miRNA function and rescued developmental defects in MZdicer mutants, indicating that the pre-miRNA secondary structure determines the processing pathway in vivo. We propose that Ago2-mediated cleavage of pre-miRNAs, followed by uridylation and trimming, generates functional miRNAs independently of Dicer.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , MicroRNAs/química , MicroRNAs/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Proteínas Argonautas , Biocatálise , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Eritropoese , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Modelos Biológicos , Morfogênese , Conformação de Ácido Nucleico , Precursores de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Proteínas Recombinantes/metabolismo , Ribonuclease III/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA