Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 20(6): e1011335, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38913742

RESUMO

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.


Assuntos
Proteínas de Escherichia coli , Fosfolipídeos , Fosfolipídeos/metabolismo , Fosfolipídeos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte Biológico/genética , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Temperatura Baixa , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo
2.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33542101

RESUMO

T-cell responses to posttranslationally modified self-antigens are associated with many autoimmune disorders. In type 1 diabetes, hybrid insulin peptides (HIPs) are implicated in the T-cell-mediated destruction of insulin-producing ß-cells within pancreatic islets. The natural history of the disease is such that it allows for the study of T-cell reactivity prior to the onset of clinical symptoms. We hypothesized that CD4 T-cell responses to posttranslationally modified islet peptides precedes diabetes onset. In a cohort of genetically at-risk individuals, we measured longitudinal T-cell responses to native insulin and hybrid insulin peptides. Both proinflammatory (interferon-γ) and antiinflammatory (interluekin-10) cytokine responses to HIPs were more robust than those to native peptides, and the ratio of such responses oscillated between pro- and antiinflammatory over time. However, individuals who developed islet autoantibodies or progressed to clinical type 1 diabetes had predominantly inflammatory T-cell responses to HIPs. Additionally, several HIP T-cell responses correlated to worsening measurements of blood glucose, highlighting the relevance of T-cell responses to posttranslationally modified peptides prior to autoimmune disease development.


Assuntos
Autoantígenos/genética , Diabetes Mellitus Tipo 1/genética , Insulina/imunologia , Interferon gama/genética , Peptídeos/genética , Adolescente , Adulto , Autoanticorpos/genética , Autoanticorpos/imunologia , Autoantígenos/imunologia , Autoimunidade/genética , Autoimunidade/imunologia , Linfócitos T CD4-Positivos/imunologia , Criança , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/patologia , Progressão da Doença , Feminino , Humanos , Insulina/genética , Células Secretoras de Insulina/imunologia , Ilhotas Pancreáticas/imunologia , Ilhotas Pancreáticas/patologia , Masculino , Peptídeos/imunologia , Linfócitos T/imunologia , Adulto Jovem
3.
J Bacteriol ; 205(1): e0040322, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36622229

RESUMO

The Gram-negative outer membrane (OM) is an asymmetric bilayer with phospholipids in its inner leaflet and mainly lipopolysaccharide (LPS) in its outer leaflet and is largely impermeable to many antibiotics. In Enterobacterales (e.g., Escherichia, Salmonella, Klebsiella, and Yersinia), the outer leaflet of the OM also contains phosphoglyceride-linked enterobacterial common antigen (ECAPG). This molecule consists of the conserved ECA carbohydrate linked to diacylglycerol-phosphate (DAG-P) through a phosphodiester bond. ECAPG contributes to the OM permeability barrier and modeling suggests that it may alter the packing of LPS molecules in the OM. Here, we investigate, in Escherichia coli K-12, the reaction synthesizing ECAPG from ECA precursor linked to an isoprenoid carrier to identify the lipid donor that provides the DAG-P moiety to ECAPG. Through overexpression of phospholipid biosynthesis genes, we observed alterations expected to increase levels of phosphatidylglycerol (PG) increased the synthesis of ECAPG, whereas alterations expected to decrease levels of PG decreased the synthesis of ECAPG. We discovered depletion of PG levels in strains that could synthesize ECAPG, but not other forms of ECA, causes additional growth defects, likely due to the buildup of ECA precursor on the isoprenoid carrier inhibiting peptidoglycan biosynthesis. Our results demonstrate ECAPG can be synthesized in the absence of the other major phospholipids (phosphatidylethanolamine and cardiolipin). Overall, these results conclusively demonstrate PG is the lipid donor for the synthesis of ECAPG and provide a key insight into the reaction producing ECAPG. In addition, these results provide an interesting parallel to lipoprotein acylation, which also uses PG as its DAG donor. IMPORTANCE The Gram-negative outer membrane is a permeability barrier preventing cellular entry of antibiotics. However, outer membrane biogenesis pathways are targets for small molecule development. Here, we investigate the synthesis of a form of enterobacterial common antigen (ECA), ECAPG, found in the outer membrane of Enterobacterales (e.g., Escherichia, Salmonella, and Klebsiella). ECAPG consists of the conserved ECA carbohydrate unit linked to diacylglycerol-phosphate-ECA is a phospholipid headgroup. The details of the reaction forming this molecule from polymerized ECA precursor are unknown. We determined the lipid donor providing the phospholipid moiety is phosphatidylglycerol. Understanding the synthesis of outer membrane constituents such as ECAPG provides the opportunity for development of molecules to increase outer membrane permeability, expanding the antibiotics available to treat Gram-negative infections.


Assuntos
Escherichia coli K12 , Lipopolissacarídeos , Lipopolissacarídeos/metabolismo , Diglicerídeos/metabolismo , Fosfolipídeos/metabolismo , Fosfatidilgliceróis , Escherichia coli K12/metabolismo , Escherichia coli/genética , Antígenos de Bactérias/metabolismo , Antibacterianos/metabolismo , Terpenos/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(43): 26907-26914, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046656

RESUMO

The outer membrane (OM) of Gram-negative bacteria is a selective permeability barrier that allows uptake of nutrients while simultaneously protecting the cell from harmful compounds. The basic pathways and molecular machinery responsible for transporting lipopolysaccharides (LPS), lipoproteins, and ß-barrel proteins to the OM have been identified, but very little is known about phospholipid (PL) transport. To identify genes capable of affecting PL transport, we screened for genetic interactions with mlaA*, a mutant in which anterograde PL transport causes the inner membrane (IM) to shrink and eventually rupture; characterization of mlaA*-mediated lysis suggested that PL transport can occur via a high-flux diffusive flow mechanism. We found that YhdP, an IM protein involved in maintaining the OM permeability barrier, modulates the rate of PL transport during mlaA*-mediated lysis. Deletion of yhdP from mlaA* reduced the rate of IM transport to the OM by 50%, slowing shrinkage of the IM and delaying lysis. As a result, the weakened OM of ∆yhdP cells was further compromised and ruptured before the IM during mlaA*-mediated death. These findings demonstrate the existence of a high-flux diffusive pathway for PL flow in Escherichia coli that is modulated by YhdP.


Assuntos
Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Transferência de Fosfolipídeos/fisiologia , Fosfolipídeos/metabolismo , Escherichia coli K12
5.
Proc Natl Acad Sci U S A ; 116(43): 21748-21757, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31591200

RESUMO

The development of new antimicrobial drugs is a priority to combat the increasing spread of multidrug-resistant bacteria. This development is especially problematic in gram-negative bacteria due to the outer membrane (OM) permeability barrier and multidrug efflux pumps. Therefore, we screened for compounds that target essential, nonredundant, surface-exposed processes in gram-negative bacteria. We identified a compound, MRL-494, that inhibits assembly of OM proteins (OMPs) by the ß-barrel assembly machine (BAM complex). The BAM complex contains one essential surface-exposed protein, BamA. We constructed a bamA mutagenesis library, screened for resistance to MRL-494, and identified the mutation bamAE470K BamAE470K restores OMP biogenesis in the presence of MRL-494. The mutant protein has both altered conformation and activity, suggesting it could either inhibit MRL-494 binding or allow BamA to function in the presence of MRL-494. By cellular thermal shift assay (CETSA), we determined that MRL-494 stabilizes BamA and BamAE470K from thermally induced aggregation, indicating direct or proximal binding to both BamA and BamAE470K Thus, it is the altered activity of BamAE470K responsible for resistance to MRL-494. Strikingly, MRL-494 possesses a second mechanism of action that kills gram-positive organisms. In microbes lacking an OM, MRL-494 lethally disrupts the cytoplasmic membrane. We suggest that the compound cannot disrupt the cytoplasmic membrane of gram-negative bacteria because it cannot penetrate the OM. Instead, MRL-494 inhibits OMP biogenesis from outside the OM by targeting BamA. The identification of a small molecule that inhibits OMP biogenesis at the cell surface represents a distinct class of antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Triazinas/farmacologia , Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Proteínas da Membrana Bacteriana Externa/genética , Transporte Biológico/fisiologia , Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Avaliação Pré-Clínica de Medicamentos , Farmacorresistência Bacteriana/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 23(6)2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35328581

RESUMO

While progress has been made toward understanding mechanisms that lead to the development of autoimmunity, there is less knowledge regarding protective mechanisms from developing such diseases. For example, in type 1 diabetes (T1D), the immune-mediated form of diabetes, the role of pathogenic T cells in the destruction of pancreatic islets is well characterized, but immune-mediated mechanisms that contribute to T1D protection have not been fully elucidated. One potential protective mechanism includes the suppression of immune responses by regulatory CD4 T cells (Tregs) that recognize self-peptides from islets presented by human leukocyte antigen (HLA) class II molecules. In this review, we summarize what is known about the antigenic self-peptides recognized by Tregs in the context of T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Autoantígenos , Autoimunidade , Diabetes Mellitus Tipo 1/patologia , Antígenos HLA , Humanos , Ilhotas Pancreáticas/patologia , Linfócitos T Reguladores
7.
J Immunol ; 199(7): 2279-2290, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28827283

RESUMO

Sarcoidosis is a granulomatous disease that primarily affects the lungs and is characterized by an accumulation of CD4+ T cells in the bronchoalveolar lavage (BAL). Previous work has indicated that HLA-DRB1*03:01+ (DR3+) patients diagnosed with the acute form of the disease, Löfgren's syndrome (LS), have an accumulation of CD4+ T cells bearing TCRs using TRAV12-1 (formerly AV2S3). However, the importance of these α-chains in disease pathogenesis and the paired TCRß-chain remains unknown. This study aimed to identify expanded αßTCR pairs expressed on CD4+ T cells derived from the BAL of DR3+ LS patients. Using a deep-sequencing approach, we determined TCRα- and TCRß-chain usage, as well as αßTCR pairs expressed on BAL CD4+ T cells from LS patients. TRAV12-1 and TRBV2 (formerly BV22) were the most expanded V region gene segments in DR3+ LS patients relative to control subjects, and TRAV12-1 and TRBV2 CDR3 motifs were shared among multiple DR3+ LS patients. When assessing αßTCR pairing, TRAV12-1 preferentially paired with TRBV2, and these TRAV12-1/TRBV2 TCRs displayed CDR3 homology. These findings suggest that public CD4+ TCR repertoires exist among LS patients and that these T cells are recognizing the putative sarcoidosis-associated Ag(s) in the context of DR3.


Assuntos
Líquido da Lavagem Broncoalveolar/citologia , Pulmão/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Sarcoidose Pulmonar/imunologia , Doença Aguda , Adulto , Idoso , Líquido da Lavagem Broncoalveolar/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Cadeias HLA-DRB1/genética , Cadeias HLA-DRB1/imunologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/genética , Membro 25 de Receptores de Fatores de Necrose Tumoral/imunologia
8.
J Bacteriol ; 199(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27821607

RESUMO

Gram-negative bacteria have effective methods of excluding toxic compounds, including a largely impermeable outer membrane (OM) and a range of efflux pumps. Furthermore, when cells become nutrient limited, RpoS enacts a global expression change providing cross-protection against many stresses. Here, we utilized sensitivity to an anionic detergent (sodium dodecyl sulfate [SDS]) to probe changes occurring to the cell's permeability barrier during nutrient limitation. Escherichia coli is resistant to SDS whether cells are actively growing, carbon limited, or nitrogen limited. In actively growing cells, this resistance depends on the AcrAB-TolC efflux pump; however, this pump is not necessary for protection under either carbon-limiting or nitrogen-limiting conditions, suggesting an alternative mechanism(s) of SDS resistance. In carbon-limited cells, RpoS-dependent pathways lessen the permeability of the OM, preventing the necessity for efflux. In nitrogen-limited but not carbon-limited cells, the loss of rpoS can be completely compensated for by the AcrAB-TolC efflux pump. We suggest that this difference simply reflects the fact that nitrogen-limited cells have access to a metabolizable energy (carbon) source that can efficiently power the efflux pump. Using a transposon mutant pool sequencing (Tn-Seq) approach, we identified three genes, sanA, dacA, and yhdP, that are necessary for RpoS-dependent SDS resistance in carbon-limited stationary phase. Using genetic analysis, we determined that these genes are involved in two different envelope-strengthening pathways. These genes have not previously been implicated in stationary-phase stress responses. A third novel RpoS-dependent pathway appears to strengthen the cell's permeability barrier in nitrogen-limited cells. Thus, though cells remain phenotypically SDS resistant, SDS resistance mechanisms differ significantly between growth states. IMPORTANCE: Gram-negative bacteria are intrinsically resistant to detergents and many antibiotics due to synergistic activities of a strong outer membrane (OM) permeability barrier and efflux pumps that capture and expel toxic molecules eluding the barrier. When the bacteria are depleted of an essential nutrient, a program of gene expression providing cross-protection against many stresses is induced. Whether this program alters the OM to further strengthen the barrier is unknown. Here, we identify novel pathways dependent on the master regulator of stationary phase that further strengthen the OM permeability barrier during nutrient limitation, circumventing the need for efflux pumps. Decreased permeability of nutrient-limited cells to toxic compounds has important implications for designing new antibiotics capable of targeting Gram-negative bacteria that may be in a growth-limited state.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/fisiologia , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Fator sigma/metabolismo , Proteínas de Bactérias/genética , Carbono , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Membrana Celular/efeitos dos fármacos , Proliferação de Células , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutação , Nitrogênio , Permeabilidade , Fator sigma/genética , Dodecilsulfato de Sódio
9.
J Virol ; 88(2): 925-36, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198403

RESUMO

Tripartite motif proteins are important viral restriction factors and affect processes ranging from uncoating to transcription to immune signaling. Specifically, the promyelocytic leukemia protein (TRIM19; also called PML) is a viral restriction factor inhibiting processes from uncoating to transcription to cell survival. Here we investigated PML's effect on adeno-associated virus (AAV), a parvovirus used for gene delivery. Although dependovirus (AAV) and autonomous parvovirus (minute virus of mice) replication centers can colocalize with PML, PML's functional effect on parvoviruses is unknown. Using PML knockout mice, we determined that PML knockout enhances recombinant AAV2 (rAAV2) transduction at a range of vector doses in both male and female mice. In fact, male and female PML knockout mice exhibited up to 56-fold and 28-fold increases in transduction, respectively. PML inhibited several rAAV serotypes, suggesting a conserved mechanism, and organ specificity correlated with PML expression. Mechanistically, PML inhibited rAAV second-strand DNA synthesis, precluding inhibition of self-complementary rAAV, and did not affect the prior steps in transduction. Furthermore, we confirmed the effect of human PML on rAAV transduction through small interfering RNA (siRNA)-mediated knockdown in HuH7 cells and determined that the highest level of inhibition was due to effects of PML isoform II (PMLII). Overexpression of PMLII resulted in inhibition of second-strand synthesis, vector production, and genome replication. Moreover, wild-type AAV2 production and infectivity were also inhibited by PMLII, demonstrating a PML interaction with wild-type AAV. These data have important implications for AAV-mediated gene therapy. Additionally, PMLII inhibition of AAV second-strand synthesis and replication, which are processes necessary for all parvoviruses, suggests implications for replication of other parvoviruses.


Assuntos
Replicação do DNA , Dependovirus/genética , Proteínas Nucleares/metabolismo , Infecções por Parvoviridae/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Linhagem Celular , Dependovirus/fisiologia , Regulação para Baixo , Feminino , Humanos , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Proteínas Nucleares/genética , Infecções por Parvoviridae/genética , Infecções por Parvoviridae/virologia , Proteína da Leucemia Promielocítica , Recombinação Genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Replicação Viral
10.
J Virol ; 87(23): 13035-41, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24027330

RESUMO

Proteasome inhibitors (e.g., bortezomib, MG132) are known to enhance adeno-associated virus (AAV) transduction; however, whether this results from pleotropic proteasome inhibition or off-target serine and/or cysteine protease inhibition remains unresolved. Here, we examined recombinant AAV (rAAV) effects of a new proteasome inhibitor, carfilzomib, which specifically inhibits chymotrypsin-like proteasome activity and no other proteases. We determined that proteasome inhibitors act on rAAV through proteasome inhibition and not serine or cysteine protease inhibition, likely through positive changes late in transduction.


Assuntos
Dependovirus/efeitos dos fármacos , Dependovirus/genética , Oligopeptídeos/farmacologia , Infecções por Parvoviridae/virologia , Inibidores de Proteassoma/farmacologia , Transdução Genética , Linhagem Celular , Quimotripsina/antagonistas & inibidores , Dependovirus/fisiologia , Humanos , Infecções por Parvoviridae/enzimologia
11.
J Virol ; 87(8): 4571-83, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23408604

RESUMO

Interactions with cellular stress pathways are central to the life cycle of many latent viruses. Here, we utilize adeno-associated virus (AAV) as a model to study these interactions, as previous studies have demonstrated that cellular stressors frequently increase transduction of recombinant AAV (rAAV) vectors and may even substitute for helper virus functions. Since several chemotherapeutic drugs are known to increase rAAV transduction, we investigated the effect of arsenic trioxide (As(2)O(3)), an FDA-approved chemotherapeutic agent with known effects on several other virus life cycles, on the transduction of rAAV. In vitro, As(2)O(3) caused a dose-dependent increase in rAAV2 transduction over a broad range of cell lines from various cell types and species (e.g., HEK-293, HeLa, HFF hTERT, C-12, and Cos-1). Mechanistically, As(2)O(3) treatment acted to prevent loss of virions from the perinuclear region, which correlated with increased cellular vector genome retention, and was distinguishable from proteasome inhibition. To extend our investigation of the cellular mechanism, we inhibited reactive oxygen species formation and determined that the As(2)O(3)-mediated increase in rAAV2 transduction was dependent upon production of reactive oxygen species. To further validate our in vitro data, we tested the effect of As(2)O(3) on rAAV transduction in vivo and determined that treatment initiated transgene expression as early as 2 days posttransduction and increased reporter expression by up to 10-fold. Moreover, the transduction of several other serotypes of rAAV was also enhanced in vivo, suggesting that As(2)O(3) affects a pathway used by several AAV serotypes. In summary, our data support a model wherein As(2)O(3) increases rAAV transduction both in vitro and in vivo and maintains perinuclear accumulations of capsids, facilitating productive nuclear trafficking.


Assuntos
Antineoplásicos/metabolismo , Arsenicais/metabolismo , Dependovirus/efeitos dos fármacos , Óxidos/metabolismo , Transdução Genética , Vírion/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Trióxido de Arsênio , Linhagem Celular , Humanos
12.
mBio ; 15(4): e0352223, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38470052

RESUMO

Urinary tract infection (UTI) is a ubiquitous infectious condition, and uropathogenic Escherichia coli (UPEC) is the predominant causative agent of UTI. Copper (Cu) is implicated in innate immunity, including against UPEC. Cu is a trace element utilized as a co-factor, but excess Cu is toxic due to mismetalation of non-cognate proteins. E. coli precisely regulates Cu homeostasis via efflux systems. However, Cu import mechanisms into the bacterial cell are not clear. We hypothesized that Cu import defective mutants would exhibit increased resistance to Cu. This hypothesis was tested in a forward genetic screen with transposon (Tn5) insertion mutants in UPEC strain CFT073, and we identified 32 unique Cu-resistant mutants. Transposon and defined mutants lacking yhiM, which encodes a hypothetical inner membrane protein, were more resistant to Cu than parental strain. Loss of YhiM led to decreased cellular Cu content and increased expression of copA, encoding a Cu efflux pump. The CpxAR envelope stress response system was activated in the ΔyhiM mutant as indicated by increased expression of cpxP. Transcription of yhiM was regulated by CueR and CpxR, and the CpxAR system was essential for increased Cu resistance in the ΔyhiM mutant. Importantly, activation of CpxAR system in the ΔyhiM mutant was independent of NlpE, a known activator of this system. YhiM was required for optimal fitness of UPEC in a mouse model of UTI. Our findings demonstrate that YhiM is a critical mediator of Cu homeostasis and links bacterial adaptation to Cu stress with the CpxAR-dependent envelope stress response in UPEC.IMPORTANCEUPEC is a common bacterial infection. Bacterial pathogens are exposed to host-derived Cu during infection, including UTI. Here, we describe detection of genes involved in Cu homeostasis in UPEC. A UPEC mutant lacking YhiM, a membrane protein, exhibited dramatic increase in resistance to Cu. Our study demonstrates YhiM as a nexus between Cu stress and the CpxAR-dependent envelope stress response system. Importantly, our findings establish NlpE-independent activation of CpxAR system during Cu stress in UPEC. Collectively, YhiM emerges as a critical mediator of Cu homeostasis in UPEC and highlights the interlinked nature of bacterial adaptation to survival during Cu and envelope stress.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Camundongos , Cobre/metabolismo , Escherichia coli Uropatogênica/metabolismo , Infecções por Escherichia coli/microbiologia , Infecções Urinárias/microbiologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/metabolismo
13.
bioRxiv ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-37745482

RESUMO

The outer membrane of Gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. We investigated these functions using synthetic cold sensitivity (at 30 °C) of a strain with deletion of yhdP, but not tamB or ydbH, and fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production. Deletion of tamB, redirecting phospholipid transport to YdbH, suppresses the ΔyhdP ΔfadR cold sensitivity suggesting this phenotype is directly related to phospholipid transport. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not despite lower cardiolipin levels. In addition to increased cardiolipin, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. A parsimonious explanation for our data is that YhdP and TamB have differential substrate transport preferences, most likely with YhdP preferentially transporting more saturated phospholipids and TamB preferentially transporting more unsaturated phospholipids. We envision cardiolipin contributing to this transport preference by sterically clogging TamB-mediated transport of saturated phospholipids. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions.

14.
Sci Adv ; 9(49): eadj6975, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38064552

RESUMO

T cells targeting self-proteins are important mediators in autoimmune diseases. T cells express unique cell-surface receptors (TCRs) that recognize peptides presented by major histocompatibility molecules. TCRs have been identified from blood and pancreatic islets of individuals with type 1 diabetes (T1D). Here, we tracked ~1700 known antigen-specific TCR sequences, islet antigen or viral reactive, in bulk TCRß sequencing from longitudinal blood DNA samples in at-risk cases who progressed to T1D, age/sex/human leukocyte antigen-matched controls, and a new-onset T1D cohort. Shared and frequent antigen-specific TCRß sequences were identified in all three cohorts, and viral sequences were present across all ages. Islet sequences had different patterns of accumulation based upon antigen specificity in the at-risk cases. Furthermore, 73 islet-antigen TCRß sequences were present in higher frequencies and numbers in T1D samples relative to controls. The total number of these disease-associated TCRß sequences inversely correlated with age at clinical diagnosis, indicating the potential to use disease-relevant TCR sequences as biomarkers in autoimmune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 1/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T , Peptídeos
15.
JCI Insight ; 7(18)2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-35998036

RESUMO

T cell receptor (TCR) sequences are exceptionally diverse and can now be comprehensively measured with next-generation sequencing technologies. However, a thorough investigation of longitudinal TCR repertoires throughout childhood in health and during development of a common childhood disease, type 1 diabetes (T1D), has not been undertaken. Here, we deep sequenced the TCR-ß chain repertoires from longitudinal peripheral blood DNA samples at 4 time points beginning early in life (median age of 1.4 years) from children who progressed to T1D (n = 29) and age/sex-matched islet autoantibody-negative controls (n = 25). From 53 million TCR-ß sequences, we show that the repertoire is extraordinarily diverse early in life and narrows with age independently of disease. We demonstrate the ability to identify specific TCR sequences, including those known to recognize influenza A and, separately, those specific for insulin and its precursor, preproinsulin. Insulin-reactive TCR-ß sequences were more common and frequent in number as the disease progressed in those who developed T1D compared with genetically at risk nondiabetic children, and this was not the case for influenza-reactive sequences. As an independent validation, we sequenced and analyzed TCR-ß repertoires from a cohort of new-onset T1D patients (n = 143), identifying the same preproinsulin-reactive TCRs. These results demonstrate an enrichment of preproinsulin-reactive TCR sequences during the progression to T1D, highlighting the importance of using disease-relevant TCR sequences as powerful biomarkers in autoimmune disorders.


Assuntos
Diabetes Mellitus Tipo 1 , Influenza Humana , Criança , Diabetes Mellitus Tipo 1/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética
16.
EcoSal Plus ; 9(2): eESP00372020, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34910591

RESUMO

For decades, biologist have exploited the near boundless advantages that molecular and genetic tools and analysis provide for our ability to understand biological systems. One of these genetic tools, suppressor analysis, has proven invaluable in furthering our understanding of biological processes and pathways and in discovering unknown interactions between genes and gene products. The power of suppressor analysis lies in its ability to discover genetic interactions in an unbiased manner, often leading to surprising discoveries. With advancements in technology, high-throughput approaches have aided in large-scale identification of suppressors and have helped provide insight into the core functional mechanisms through which suppressors act. In this review, we examine some of the fundamental discoveries that have been made possible through analysis of suppressor mutations. In addition, we cover the different types of suppressor mutants that can be isolated and the biological insights afforded by each type. Moreover, we provide considerations for the design of experiments to isolate suppressor mutants and for strategies to identify intergenic suppressor mutations. Finally, we provide guidance and example protocols for the isolation and mapping of suppressor mutants.


Assuntos
Epistasia Genética , Supressão Genética
17.
mBio ; 12(6): e0284621, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34809459

RESUMO

The Gram-negative cell envelope is a complex structure delineating the cell from its environment. Recently, we found that enterobacterial common antigen (ECA) plays a role maintaining the outer membrane (OM) permeability barrier, which excludes toxic molecules including many antibiotics. ECA is a conserved carbohydrate found throughout Enterobacterales (e.g., Salmonella, Klebsiella, and Yersinia). There are two OM forms of ECA (phosphoglyceride-linked ECAPG and lipopolysaccharide-linked ECALPS) and one periplasmic form of ECA (cyclic ECACYC). ECAPG, found in the outer leaflet of the OM, consists of a linear ECA oligomer attached to phosphoglyceride through a phosphodiester linkage. The process through which ECAPG is produced from polymerized ECA is unknown. Therefore, we set out to identify genes interacting genetically with ECAPG biosynthesis in Escherichia coli K-12 using the competition between ECA and peptidoglycan biosynthesis. Through transposon-directed insertion sequencing, we identified an interaction between elyC and ECAPG biosynthesis. ElyC is an inner membrane protein previously shown to alter peptidoglycan biosynthesis rates. We found ΔelyC was lethal specifically in strains producing ECAPG without other ECA forms, suggesting ECAPG biosynthesis impairment or dysregulation. Further characterization suggested ElyC inhibits ECAPG synthesis in a posttranscriptional manner. Moreover, the full impact of ElyC on ECA levels requires the presence of ECACYC. Our data demonstrate ECACYC can regulate ECAPG synthesis in strains wild type for elyC. Overall, our data demonstrate ElyC and ECACYC act in a novel pathway that regulates the production of ECAPG, supporting a model in which ElyC provides feedback regulation of ECAPG production based on the periplasmic levels of ECACYC. IMPORTANCE Enterobacterial common antigen (ECA) is a conserved polysaccharide present on the surface of the outer membrane (OM) and in the periplasm of the many pathogenic bacteria belonging to Enterobacterales, including Klebsiella pneumoniae, Salmonella enterica, and Yersinia pestis. As the OM is a permeability barrier that excludes many antibiotics, synthesis pathways for OM molecules are promising targets for antimicrobial discovery. Here, we elucidated, in E. coli K-12, a new pathway for the regulation of biosynthesis of one cell surface form of ECA, ECAPG. In this pathway, an inner membrane protein, ElyC, and the periplasmic form of ECA, ECACYC, genetically interact to inhibit the synthesis of ECAPG, potentially through feedback regulation based on ECACYC levels. This is the first insight into the pathway responsible for synthesis of ECAPG and represents a potential target for weakening the OM permeability barrier. Furthermore, this pathway provides a tool for experimental manipulation of ECAPG levels.


Assuntos
Antígenos de Bactérias/biossíntese , Escherichia coli/metabolismo , Glicerofosfolipídeos/biossíntese , Antígenos de Bactérias/química , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Glicerofosfolipídeos/química
18.
J Exp Med ; 218(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34410304

RESUMO

Löfgren's syndrome (LS) is an acute form of sarcoidosis characterized by a genetic association with HLA-DRB1*03 (HLA-DR3) and an accumulation of CD4+ T cells of unknown specificity in the bronchoalveolar lavage (BAL). Here, we screened related LS-specific TCRs for antigen specificity and identified a peptide derived from NAD-dependent histone deacetylase hst4 (NDPD) of Aspergillus nidulans that stimulated these CD4+ T cells in an HLA-DR3-restricted manner. Using ELISPOT analysis, a greater number of IFN-γ- and IL-2-secreting T cells in the BAL of DR3+ LS subjects compared with DR3+ control subjects was observed in response to the NDPD peptide. Finally, increased IgG antibody responses to A. nidulans NDPD were detected in the serum of DR3+ LS subjects. Thus, our findings identify a ligand for CD4+ T cells derived from the lungs of LS patients and suggest a role of A. nidulans in the etiology of LS.


Assuntos
Aspergillus nidulans/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Epitopos de Linfócito T/imunologia , Sarcoidose/imunologia , Adulto , Animais , Antígenos de Fungos/imunologia , Estudos de Casos e Controles , Feminino , Proteínas Fúngicas/imunologia , Antígeno HLA-DR3/química , Antígeno HLA-DR3/genética , Antígeno HLA-DR3/imunologia , Humanos , Hibridomas/imunologia , Imunoglobulina G , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade
19.
Microbiology (Reading) ; 156(Pt 1): 270-277, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19797357

RESUMO

Muscodor crispans is a recently described novel endophytic fungus of Ananas ananassoides (wild pineapple) growing in the Bolivian Amazon Basin. The fungus produces a mixture of volatile organic compounds (VOCs); some of the major components of this mixture, as determined by GC/MS, are propanoic acid, 2-methyl-, methyl ester; propanoic acid, 2-methyl-; 1-butanol, 3-methyl-;1-butanol, 3-methyl-, acetate; propanoic acid, 2-methyl-, 2-methylbutyl ester; and ethanol. The fungus does not, however, produce naphthalene or azulene derivatives as has been observed with many other members of the genus Muscodor. The mixture of VOCs produced by M. crispans cultures possesses antibiotic properties, as does an artificial mixture of a majority of the components. The VOCs of the fungus are effective against a wide range of plant pathogens, including the fungi Pythium ultimum, Phytophthora cinnamomi, Sclerotinia sclerotiorum and Mycosphaerella fijiensis (the black sigatoka pathogen of bananas), and the serious bacterial pathogen of citrus, Xanthomonas axonopodis pv. citri. In addition, the VOCs of M. crispans killed several human pathogens, including Yersinia pestis, Mycobacterium tuberculosis and Staphylococcus aureus. Artificial mixtures of the fungal VOCs were both inhibitory and lethal to a number of human and plant pathogens, including three drug-resistant strains of Mycobacterium tuberculosis. The gaseous products of Muscodor crispans potentially could prove to be beneficial in the fields of medicine, agriculture, and industry.


Assuntos
Anti-Infecciosos/química , Compostos Orgânicos Voláteis/química , Xylariales/química , Ananas/microbiologia , Anti-Infecciosos/isolamento & purificação , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Compostos Orgânicos Voláteis/isolamento & purificação
20.
J Life Sci (Westlake Village) ; 2(4): 38-58, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33364626

RESUMO

T cells are an integral component of the adaptive immune response via the recognition of peptides by the cell surface-expressed T cell receptor (TCR). Rearrangement of the TCR genes results in a highly polymorphic repertoire on the T cells within a given individual. Although the diverse repertoire is beneficial for immune responses to foreign pathogens, recognition of self-peptides by T cells can contribute to the development of autoimmune disorders. Increasing evidence supports a pathogenic role for T cells in autoimmune pathology, and it is of interest to determine the TCR repertoires involved in autoimmune disease development. In this review, we summarize methodologies and advancements in the TCR sequencing field and discuss recent studies focused on TCR sequencing in a variety of autoimmune conditions. The rapidly evolving methodology of TCR sequencing has the potential to allow for a better understanding of autoimmune disease pathogenesis, identify disease-specific biomarkers, and aid in developing therapies to prevent and treat a number of these disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA