Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Prev Med ; 178: 107817, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38097139

RESUMO

OBJECTIVE: Allostatic load can reflect the body's response to chronic stress. However, little is known about the association between allostatic load and risk of breast cancer in postmenopausal women. This study used a large prospective cohort in the United States to examine the relationship between allostatic load and invasive breast cancer risk, and to evaluate the relationship by racial and ethnic identity and breast cancer subtypes. METHODS: Among 161,808 postmenopausal participants in Women's Health Initiative, eligible were a subsample of 27,393 postmenopausal women aged 50-79 years old, who enrolled from 1993 to 1998, had serum test biomarkers, and were followed for breast cancer incidence through February 2022. Allostatic load at enrollment was computed based on eight biomarkers from lab serum tests and a questionnaire about participants' prescription drug use. The associations between allostatic scores and risk of breast cancer (overall and by subtypes) were assessed using Cox proportional hazards models. The race and ethnic differences were examined. RESULTS: Over a median follow-up time of 17.24 years, 1722 invasive breast cancer cases were identified. High allostatic load was associated with an increased risk of breast cancer (HR = 1.36, 95%CI: 1.20, 1.54 for third tertile vs first tertile, Ptrend < 0.0001). Similar trends were found in White women and non-Hispanic women. Higher allostatic load was associated with hormone receptor-positive and HER2/Neu-negative breast cancer (HR = 1.54, 95%CI: 1.30, 1.80 for third tertile vs first tertile, Ptrend < 0.0001). CONCLUSION: In this study, we found that higher allostatic load was significantly associated with an increased risk of breast cancer in postmenopausal women.


Assuntos
Alostase , Neoplasias da Mama , Feminino , Humanos , Estados Unidos/epidemiologia , Pessoa de Meia-Idade , Idoso , Neoplasias da Mama/epidemiologia , Alostase/fisiologia , Pós-Menopausa , Estudos Prospectivos , Biomarcadores
2.
Mol Cancer ; 19(1): 143, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32928232

RESUMO

BACKGROUND: Very few proteins encoded by the presumed non-coding RNA transcripts have been identified. Their cellular functions remain largely unknown. This study identifies the tumor-suppressor function of a novel microprotein encoded by the precursor of miR-34a. It consists of 133 amino acid residues, thereby named as miPEP133 (pri-microRNA encoded peptide 133). METHODS: We overexpressed miPEP133 in nasopharyngeal carcinoma (NPC), ovarian cancer and cervical cancer cell lines to determine its effects on cell growth, apoptosis, migration, or invasion. Its impact on tumor growth was evaluated in a xenograft NPC model. Its prognostic value was analyzed using NPC clinical samples. We also conducted western blot, immunoprecipitation, mass spectrometry, confocal microscopy and flow cytometry to determine the underlying mechanisms of miPEP133 function and regulation. RESULTS: miPEP133 was expressed in normal human colon, stomach, ovary, uterus and pharynx. It was downregulated in cancer cell lines and tumors. miPEP133 overexpression induced apoptosis in cancer cells and inhibited their migration and invasion. miPEP133 inhibited tumor growth in vivo. Low miPEP133 expression was an unfavorable prognostic marker associated with advanced metastatic NPC. Wild-type p53 but not mutant p53 induced miPEP133 expression. miPEP133 enhanced p53 transcriptional activation and miR-34a expression. miPEP133 localized in the mitochondria to interact with mitochondrial heat shock protein 70kD (HSPA9) and prevent HSPA9 from interacting with its binding partners, leading to the decrease of mitochondrial membrane potential and mitochondrial mass. CONCLUSION: miPEP133 is a tumor suppressor localized in the mitochondria. It is a potential prognostic marker and therapeutic target for multiple types of cancers.


Assuntos
Proteínas de Choque Térmico HSP70/genética , MicroRNAs/genética , Proteínas Mitocondriais/genética , Proteína Supressora de Tumor p53/genética , Animais , Proliferação de Células/genética , Feminino , Citometria de Fluxo , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Camundongos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/patologia
3.
Int J Gynecol Cancer ; 29(Suppl 2): s12-s15, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31462543

RESUMO

The 12th Biennial Ovarian Cancer Research Symposium organized by the Rivkin Center for Ovarian Cancer and the American Association for Cancer Research held on September 13-15, 2018 covered cutting edge and relevant research topics in ovarian cancer biology and therapy. Sessions included detection and prevention, genomics and molecular mechanisms, tumor microenvironment and immunology, novel therapeutics, and an education session. In this article we provide an overview of the key findings presented in the tumor microenvironment and immunology session.


Assuntos
Neoplasias Ovarianas/imunologia , Animais , Feminino , Humanos , Neoplasias Ovarianas/patologia , Microambiente Tumoral/imunologia
4.
Gynecol Oncol ; 138(2): 372-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26050922

RESUMO

OBJECTIVE: Genomic studies of ovarian cancer (OC) cell lines frequently used in research revealed that these cells do not fully represent high-grade serous ovarian cancer (HGSOC), the most common OC histologic type. However, OC lines that appear to genomically resemble HGSOC have not been extensively used and their growth characteristics in murine xenografts are essentially unknown. METHODS: To better understand growth patterns and characteristics of HGSOC cell lines in vivo, CAOV3, COV362, KURAMOCHI, NIH-OVCAR3, OVCAR4, OVCAR5, OVCAR8, OVSAHO, OVKATE, SNU119 and UWB1.289 cells were assessed for tumor formation in nude mice. Cells were injected intraperitoneally (i.p.) or subcutaneously (s.c.) in female athymic nude mice and allowed to grow (maximum of 90 days) and tumor formation was analyzed. All tumors were sectioned and assessed using H&E staining and immunohistochemistry for p53, PAX8 and WT1 expression. RESULTS: Six lines (OVCAR3, OVCAR4, OVCAR5, OVCAR8, CAOV3, and OVSAHO) formed i.p xenografts with HGSOC histology. OVKATE and COV362 formed s.c. tumors only. Rapid tumor formation was observed for OVCAR3, OVCAR5 and OVCAR8, but only OVCAR8 reliably formed ascites. Tumors derived from OVCAR3, OVCAR4, and OVKATE displayed papillary features. Of the 11 lines examined, three (Kuramochi, SNU119 and UWB1.289) were non-tumorigenic. CONCLUSIONS: Our findings help further define which HGSOC cell models reliably generate tumors and/or ascites, critical information for preclinical drug development, validating in vitro findings, imaging and prevention studies by the OC research community.


Assuntos
Cistadenocarcinoma Seroso/patologia , Modelos Animais de Doenças , Neoplasias Ovarianas/patologia , Animais , Processos de Crescimento Celular , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Feminino , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Gradação de Tumores , Neoplasias Ovarianas/metabolismo , Fator de Transcrição PAX8 , Fatores de Transcrição Box Pareados/biossíntese , Proteína Supressora de Tumor p53/biossíntese , Proteínas WT1/biossíntese
5.
Am J Obstet Gynecol ; 212(4): 479.e1-479.e10, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25446664

RESUMO

OBJECTIVE: There is increasing preclinical evidence indicating that metformin, a medication commonly used for type 2 diabetes mellitus, may protect against cancer. Motivated by this emerging evidence we asked 2 questions: (1) can metformin prevent ovarian cancer growth by altering metabolism and (2) will metformin increase sensitivity to chemotherapy. STUDY DESIGN: The effect of metformin in ovarian cancer was tested in vitro and with 2 different mouse models. In vitro, cell lines (n = 6) were treated with metformin (10-40 mmol/L) or phosphate-buffered saline solution and cellular proliferation and metabolic alterations (adenosine monophosphate-activated protein kinase activity, glycolysis, and lipid synthesis) were compared between the 2 groups. In mouse models, a prevention study was performed by treating mice with metformin (250 mg/kg/d intraperitoneally) or placebo for 2 weeks followed by intraperitoneal injection of the SKOV3ip1 human ovarian cancer cell line, and the mean number of tumor implants in each treatment group was compared. In a treatment study, the LSL-K-ras(G12D/+)/PTEN(floxP/floxP) genetic mouse model of ovarian cancer was used. Mice were treated with placebo, paclitaxel (3 mg/kg/wk intraperitoneally for 7 weeks), metformin (100 mg/kg/d in water for 7 weeks), or paclitaxel plus metformin, and tumor volume was compared among treatment groups. RESULTS: In vitro, metformin decreased proliferation of ovarian cancer cell lines and induced cell cycle arrest, but not apoptosis. Further analysis showed that metformin altered several aspects of metabolism including adenosine monophosphate-activated protein kinase activity, glycolysis, and lipid synthesis. In the prevention mouse model, mice that were pretreated with metformin had 60% fewer tumor implants compared with controls (P < .005). In the treatment study, mice that were treated with paclitaxel plus metformin had a 60% reduction in tumor weight compared with controls (P = .02), which is a level of tumor reduction greater than that resulting from either paclitaxel or metformin alone. CONCLUSION: Based on these results, we conclude that metformin alters metabolism in ovarian cancer cells, prevents tumor growth, and increases sensitivity to chemotherapy in vitro and in mouse models. These preclinical findings suggest that metformin warrants further investigation for use as an ovarian cancer therapeutic.


Assuntos
Antineoplásicos/uso terapêutico , Metformina/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/prevenção & controle , Paclitaxel/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Humanos , Metformina/farmacologia , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Tumoral/efeitos dos fármacos
6.
Drug Saf ; 47(2): 125-133, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38070101

RESUMO

INTRODUCTION: Sodium-glucose cotransporter 2 (SGLT2) inhibitors are a relatively new class of antihyperglycemic agents, with the potential to inhibit breast cancer development. However, the association between SGLT2 inhibitors and risk of breast cancer in human studies is unclear. OBJECTIVE: The aim of our study is to use a large national claims database to assess the association between SGLT2 inhibitor use and risk of breast cancer. METHODS: We considered a study population of 158,483 adult women with type 2 diabetes who newly initiated SGLT2 inhibitors or dipeptidyl peptidase 4 (DPP4) inhibitors using Optum's deidentified Clinformatics Data Mart Database between 1 January 2013 and 31 March 2022. The association between SGLT2 inhibitor use and risk of breast cancer was examined using Cox proportional hazard models stratified by age in the overall sample and in a subsample based on propensity score and medication initiation time matching. The effect of medication use duration was explored. RESULTS: With an average follow-up of 2.2 years, 2154 breast cancer cases were identified. There was no significant association between SGLT2 inhibitor use and the risk of breast cancer in overall sample (HR = 0.96; 95% CI 0.87, 1.06), in women younger than 51 years old (HR = 0.88; 95% CI 0.59, 1.32), or in women aged 51 years or older (HR = 0.95; 95% CI 0.86, 1.04). The results remained nonsignificant using matching, medication use duration, and sensitivity analyses. CONCLUSION: Our findings suggest SGLT2 inhibitors use was not associated with breast cancer risk compared with DPP4 inhibitors use. Studies with longer follow-up and better adjustments are needed to confirm the finding.


Assuntos
Neoplasias da Mama , Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Inibidores do Transportador 2 de Sódio-Glicose , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/tratamento farmacológico , Hipoglicemiantes/efeitos adversos , Inibidores da Dipeptidil Peptidase IV/efeitos adversos
7.
NPJ Precis Oncol ; 8(1): 7, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191909

RESUMO

Frequent relapse and chemoresistance cause poor outcome in ovarian cancer (OC) and cancer stem cells (CSCs) are important contributors. While most studies focus exclusively on CSCs, the role of the microenvironment in providing optimal conditions to maintain their tumor-initiating potential remains poorly understood. Cancer associated fibroblasts (CAFs) are a major constituent of the OC tumor microenvironment and we show that CAFs and CSCs are enriched following chemotherapy in patient tumors. CAFs significantly increase OC cell resistance to carboplatin. Using heterotypic CAF-OC cocultures and in vivo limiting dilution assay, we confirm that the CAFs act by enriching the CSC population. CAFs increase the symmetric division of CSCs as well as the dedifferentiation of bulk OC cells into CSCs. The effect of CAFs is limited to OC cells in their immediate neighborhood, which can be prevented by inhibiting Wnt. Analysis of single cell RNA-seq data from OC patients reveal Wnt5a as the highest expressed Wnt in CAFs and that certain subpopulations of CAFs express higher levels of Wnt5a. Our findings demonstrate that Wnt5a from CAFs activate a noncanonical Wnt signaling pathway involving the ROR2/PKC/CREB1 axis in the neighboring CSCs. While canonical Wnt signaling is found to be predominant in interactions between cancer cells in patients, non-canonical Wnt pathway is activated by the CAF-OC crosstalk. Treatment with a Wnt5a inhibitor sensitizes tumors to carboplatin in vivo. Together, our results demonstrate a novel mechanism of CSC maintenance by signals from the microenvironmental CAFs, which can be targeted to treat OC chemoresistance and relapse.

8.
Front Cell Dev Biol ; 11: 1277076, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38269089

RESUMO

Metastasis is the least understood aspect of cancer biology. 90% of cancer related deaths occur due extensive metastatic burden in patients. Apart from metastasizing cancer cells, the pro-tumorigenic and pro-metastatic role of the tumor stroma plays a crucial part in this complex process often leading to disease relapse and therapy resistance. Cellular signaling processes play a crucial role in the process of tumorigenesis and metastasis when aberrantly turned on, not just in the cancer cells, but also in the cells of the tumor microenvironment (TME). One of the most conserved pathways includes the Notch signaling pathway that plays a crucial role in the development and progression of many cancers. In addition to its well documented role in cancer cells, recent evidence suggests crucial involvement of Notch signaling in the stroma as well. This review aims to highlight the current findings focusing on the oncogenic role of notch signaling in cancer cells and the TME, with a specific focus on cancer associated fibroblasts (CAFs), which constitute a major part of the tumor stroma and are important for tumor progression. Recent efforts have focused on the development of anti-cancer and anti-metastatic therapies targeting TME. Understanding the importance of Notch signaling in the TME would help identify important drivers for stromal reprogramming, metastasis and importantly, drive future research in the effort to develop TME-targeted therapies utilizing Notch.

9.
Biology (Basel) ; 12(12)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132318

RESUMO

Ovarian cancer is the deadliest gynecological malignancy with a high prevalence of transcoelomic metastasis. Metastasis is a multi-step process and only a small percentage of cancer cells, metastasis-initiating cells (MICs), have the capacity to finally establish metastatic lesions. These MICs maintain a certain level of stemness that allows them to differentiate into other cell types with distinct transcriptomic profiles and swiftly adapt to external stresses. Furthermore, they can coordinate with the microenvironment, through reciprocal interactions, to invade and establish metastases. Therefore, identifying, characterizing, and targeting MICs is a promising strategy to counter the spread of ovarian cancer. In this review, we provided an overview of OC MICs in the context of characterization, identification through cell surface markers, and their interactions with the metastatic niche to promote metastatic colonization.

10.
Gynecol Oncol ; 124(1): 134-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21996264

RESUMO

OBJECTIVE: To test if estrogen promotes carcinogenesis in vitro and in a genetic mouse model of ovarian cancer and whether its effects can be inhibited by a novel selective estrogen receptor modulator (SERM), bazedoxifene. METHODS: Bazedoxifene was synthesized and it was confirmed that the drug abrogated the uterine stimulatory effect of 17ß-estradiol in mice. To determine if hormones alter tumorigenesis in vivo LSL-K-ras(G12D/+)Pten(loxP/loxP) mice were treated with vehicle control, 17ß-estradiol or bazedoxifene. Hormone receptor status of a cell line established from LSL-K-ras(G12D/+)Pten(loxP/loxP) mouse ovarian tumors was characterized using Western blotting and immunohistochemistry. The cell line was treated with hormones and invasion assays were performed using Boyden chambers and proliferation was assessed using MTT assays. RESULTS: In vitro 17ß-estradiol increased both the invasion and proliferation of ovarian cancer cells and bazedoxifene reversed these effects. However, in the genetic mouse model neither treatment with 17ß-estradiol nor bazedoxifene changed mean tumor burden when compared to treatment with placebo. The mice in all treatment groups had similar tumor incidence, metastatic nodules and ascites. CONCLUSION: While 17ß-estradiol increases the invasion and proliferation of ovarian cancer cells, these effects do not translate into increased tumor burden in a genetic mouse model of endometrioid ovarian cancer. Likewise, while the SERM reversed the detrimental effects of estrogen in vitro, there was no change in tumor burden in mice treated with bazedoxifene. These findings demonstrate the complex interplay between hormones and ovarian carcinogenesis.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Estradiol/farmacologia , Indóis/farmacologia , Neoplasias Ovarianas/induzido quimicamente , Neoplasias Ovarianas/prevenção & controle , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/induzido quimicamente , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Interações Medicamentosas , Antagonistas de Estrogênios/farmacologia , Feminino , Predisposição Genética para Doença , Indóis/síntese química , Camundongos , Camundongos Transgênicos , Invasividade Neoplásica , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Ovário/efeitos dos fármacos , Ovário/patologia
11.
Cancer Res ; 82(6): 1038-1054, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34654724

RESUMO

Dissemination of ovarian cancer cells can lead to inoperable metastatic lesions in the bowel and omentum that cause patient death. Here we show that LRRC15, a type-I 15-leucine-rich repeat-containing membrane protein, highly overexpressed in ovarian cancer bowel metastases compared with matched primary tumors and acts as a potent promoter of omental metastasis. Complementary models of ovarian cancer demonstrated that LRRC15 expression leads to inhibition of anoikis-induced cell death and promotes adhesion and invasion through matrices that mimic omentum. Mechanistically, LRRC15 interacted with ß1-integrin to stimulate activation of focal adhesion kinase (FAK) signaling. As a therapeutic proof of concept, targeting LRRC15 with the specific antibody-drug conjugate ABBV-085 in both early and late metastatic ovarian cancer cell line xenograft models prevented metastatic dissemination, and these results were corroborated in metastatic patient-derived ovarian cancer xenograft models. Furthermore, treatment of 3D-spheroid cultures of LRRC15-positive patient-derived ascites with ABBV-085 reduced cell viability. Overall, these data uncover a role for LRRC15 in promoting ovarian cancer metastasis and suggest a novel and promising therapy to target ovarian cancer metastases.Significance: This study identifies that LRRC15 activates ß1-integrin/FAK signaling to promote ovarian cancer metastasis and shows that the LRRC15-targeted antibody-drug conjugate ABBV-085 suppresses ovarian cancer metastasis in preclinical models.


Assuntos
Imunoconjugados , Neoplasias Ovarianas , Carcinoma Epitelial do Ovário , Adesão Celular , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados/farmacologia , Integrinas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
12.
Am J Pathol ; 175(5): 2184-96, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19808644

RESUMO

The role of the vitronectin receptor (alpha(v)beta(3)-integrin) as a tumor promoter seems well established, and, consequently, therapies that block this integrin are currently in clinical testing. We undertook the current study to determine whether alpha(v)beta(3)-integrin is an appropriate target in ovarian cancer treatment. Expression of beta(3)-integrin in SKOV3ip1 ovarian cancer cells led to the overexpression of alpha(v)beta(3)-integrin on the cell surface and increased adhesion. However, alpha(v)beta(3)-integrin-overexpressing cells showed impaired invasion, protease expression, and colony formation. These results were recapitulated in xenograft studies: alpha(v)beta(3)-integrin-expressing cells showed increased adhesion to mouse peritoneum, but the overall number of metastatic nodules (105 versus 68 tumors) and tumor weight were significantly lower than those in the parental SKOV3ip1 cells. The alpha(v)beta(3)-integrin-overexpressing cells had a decreased proliferation rate mediated by inhibition of cyclin B1 and induction of phospho-Cdc2 and p53 expression, consistent with a G(2)M cell cycle arrest. Confirming the above results, inhibition of beta(3)-integrin in cultured or primary OvCa cells decreased adhesion but increased invasion and proliferation. Patients with tumors expressing high beta(3)-integrin had significantly better disease-free and overall survival (52 months versus 27 months, P < 0.05). This study shows that alpha(v)beta(3)-integrin expression on tumor cells actually slows tumor progression and acts as a tumor suppressor. Therefore, the vitronectin receptor might not be an appropriate therapeutic target in ovarian cancer.


Assuntos
Integrina alfaVbeta3/metabolismo , Metástase Neoplásica/patologia , Neoplasias Ovarianas , Células Tumorais Cultivadas , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores/metabolismo , Adesão Celular/fisiologia , Ciclo Celular/fisiologia , Progressão da Doença , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Integrina alfaVbeta3/genética , Estimativa de Kaplan-Meier , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Transplante de Neoplasias , Omento/metabolismo , Neoplasias Ovarianas/diagnóstico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Prognóstico
13.
Cancers (Basel) ; 12(11)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138184

RESUMO

Tumor immune infiltration plays a key role in the progression of solid tumors, including ovarian cancer, and immunotherapies are rapidly emerging as effective treatment modalities. However, the role of cancer-associated fibroblasts (CAFs), a predominant stromal constituent, in determining the tumor-immune microenvironment and modulating efficacy of immunotherapies remains poorly understood. We have conducted an extensive bioinformatic analysis of our and other publicly available ovarian cancer datasets (GSE137237, GSE132289 and GSE71340), to determine the correlation of fibroblast subtypes within the tumor microenvironment (TME) with the characteristics of tumor-immune infiltration. We identified (1) four functional modules of CAFs in ovarian cancer that are associated with the TME and metastasis of ovarian cancer, (2) immune-suppressive function of the collagen 1,3,5-expressing CAFs in primary ovarian cancer and omental metastases, and (3) consistent positive correlations between the functional modules of CAFs with anti-immune response genes and negative correlation with pro-immune response genes. Our study identifies a specific fibroblast subtype, fibroblast functional module (FFM)2, in the ovarian cancer tumor microenvironment that can potentially modulate a tumor-promoting immune microenvironment, which may be detrimental toward the effectiveness of ovarian cancer immunotherapies.

14.
Mol Cancer Res ; 18(8): 1202-1217, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32350057

RESUMO

Treatment of ovarian cancer is limited by extensive metastasis and yet it remains poorly understood. We have studied the critical step of metastatic colonization in the context of the productive interactions with the metastatic microenvironment with a goal of identifying key regulators. By combining miRNA expression analysis using an organotypic 3D culture model of early ovarian cancer metastasis with that of matched primary and metastatic tumors from 42 patients with ovarian cancer, we identified miR-4454 as a key regulator of both early colonization and advanced metastasis in patients with ovarian cancer. miR-4454 was downregulated in the metastasizing ovarian cancer cells through paracrine signals from microenvironmental fibroblasts, which promoted migration, invasion, proliferation, and clonogenic growth in ovarian cancer cells as well as their ability to penetrate through the outer layers of the omentum. Stable overexpression of miR-4454 decreased metastasis in ovarian cancer xenografts. Its mechanism of action was through the upregulation of its targets, secreted protein acidic and cysteine rich (SPARC) and BCL2 associated athanogene 5 (BAG5), which activated focal adhesion kinase (FAK) signaling, promoted mutant p53 gain of function by its stabilization, and inhibited apoptosis. Because microenvironment-induced downregulation of miR-4454 is essential for early and advanced metastasis, targeting it could be a promising therapeutic approach. IMPLICATIONS: This study identifies a miRNA, miR-4454, which is downregulated by signals from the microenvironment and promotes early and advanced ovarian cancer metastasis through its effects on FAK activation, mutant p53 stabilization, and apoptosis inhibition.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Regulação para Baixo , MicroRNAs/genética , Osteonectina/genética , Neoplasias Ovarianas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Mutação , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Ovarianas/genética , Estabilidade Proteica , Microambiente Tumoral , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/genética
15.
Cancers (Basel) ; 11(10)2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31600962

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy. There is a lack of comprehensive investigation of disease initiation and progression, including gene expression changes during early metastatic colonization. METHODS: RNA-sequencing (RNA-seq) was done with matched primary tumors and fallopian tubes (n = 8 pairs) as well as matched metastatic and primary tumors (n = 11 pairs) from ovarian cancer patients. Since these are end point analyses, it was combined with RNA-seq using high-grade serous ovarian cancer cells seeded on an organotypic three-dimensional (3D) culture model of the omentum, mimicking early metastasis. This comprehensive approach revealed key changes in gene expression occurring in ovarian cancer initiation and metastasis, including early metastatic colonization. RESULTS: 2987 genes were significantly deregulated in primary tumors compared to fallopian tubes, 845 genes were differentially expressed in metastasis compared to primary tumors and 304 genes were common to both. An assessment of patient metastasis and 3D omental culture model of early metastatic colonization revealed 144 common genes that were altered during early colonization and remain deregulated even in the fully developed metastasis. Deregulation of the matrisome was a key process in early and late metastasis. CONCLUSION: These findings will help in understanding the key pathways involved in ovarian cancer progression and eventually targeting those pathways for therapeutic interventions.

16.
Cancers (Basel) ; 10(11)2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30380628

RESUMO

Ovarian cancer is the most lethal gynecologic malignancy, and patient prognosis has not improved significantly over the last several decades. In order to improve therapeutic approaches and patient outcomes, there is a critical need for focused research towards better understanding of the disease. Recent findings have revealed that the tumor microenvironment plays an essential role in promoting cancer progression and metastasis. The tumor microenvironment consists of cancer cells and several different types of normal cells recruited and reprogrammed by the cancer cells to produce factors beneficial to tumor growth and spread. These normal cells present within the tumor, along with the various extracellular matrix proteins and secreted factors, constitute the tumor stroma and can compose 10⁻60% of the tumor volume. Cancer associated fibroblasts (CAFs) are a major constituent of the tumor microenvironment, and play a critical role in promoting many aspects of tumor function. This review will describe the various hypotheses about the origin of CAFs, their major functions in the tumor microenvironment in ovarian cancer, and will discuss the potential of targeting CAFs as a possible therapeutic approach.

17.
J Vis Exp ; (138)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30222146

RESUMO

Intercellular interactions play an important role in many biological processes, including tumor progression, immune responses, angiogenesis, and development. Paracrine or juxtacrine signaling mediates such interactions. The use of a conditioned medium and coculture studies are the most common methods to discriminate between these two types of interactions. However, the effect of localized high concentrations of secreted factors in the microenvironment during the paracrine interactions is not accurately recapitulated by conditioned medium and, thus, may lead to imprecise conclusions. To overcome this problem, we have devised a proximal culture method to study paracrine signaling. The two cell types are grown on either surface of a 10 µm-thick polycarbonate membrane with 0.4 µm pores. The pores allow the exchange of secreted factors and, at the same time, inhibit juxtacrine signaling. The cells can be collected and lysed at the endpoint to determine the effects of the paracrine signaling. In addition to allowing for localized concentration gradients of secreted factors, this method is amenable to experiments involving prolonged periods of culture, as well as the use of inhibitors. While we use this method to study the interactions between ovarian cancer cells and the mesothelial cells they encounter at the site of metastasis, it can be adapted to any two adherent cell types for researchers to study paracrine signaling in various fields, including tumor microenvironment, immunology, and development.


Assuntos
Comunicação Parácrina/imunologia , Técnicas de Cocultura , Humanos , Transdução de Sinais
18.
Cancer Lett ; 414: 190-204, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29174800

RESUMO

Metastatic colonization involves paracrine/juxtacrine interactions with the microenvironment inducing an adaptive response through transcriptional regulation. However, the identities of transcription factors (TFs) induced by the metastatic microenvironment in ovarian cancer (OC) and their mechanism of action is poorly understood. Using an organotypic 3D culture model recapitulating the early events of metastasis, we identified ETS1 as the most upregulated member of the ETS family of TFs in metastasizing OC cells as they interacted with the microenvironment. ETS1 was regulated by p44/42 MAP kinase signaling activated in the OC cells interacting with mesothelial cells at the metastatic site. Human OC tumors had increased expression of ETS1, which predicted poor prognosis. ETS1 regulated OC metastasis both in vitro and in mouse xenografts. A combination of ChIP-seq and RNA-seq analysis and functional rescue experiments revealed FAK as the key transcriptional target and downstream effector of ETS1. Taken together, our results indicate that ETS1 is an essential transcription factor induced in OC cells by the microenvironment, which promotes metastatic colonization though the transcriptional upregulation of its target FAK.


Assuntos
Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Proteína Proto-Oncogênica c-ets-1/genética , Microambiente Tumoral/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Quinase 1 de Adesão Focal/metabolismo , Humanos , Estimativa de Kaplan-Meier , Camundongos Nus , Metástase Neoplásica , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Proteína Proto-Oncogênica c-ets-1/metabolismo , Interferência de RNA , Transplante Heterólogo
19.
Oncogene ; 37(17): 2285-2301, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29398710

RESUMO

Ovarian cancer (OvCa) is characterized by widespread and rapid metastasis in the peritoneal cavity. Visceral adipocytes promote this process by providing fatty acids (FAs) for tumour growth. However, the exact mechanism of FA transfer from adipocytes to cancer cells remains unknown. This study shows that OvCa cells co-cultured with primary human omental adipocytes express high levels of the FA receptor, CD36, in the plasma membrane, thereby facilitating exogenous FA uptake. Depriving OvCa cells of adipocyte-derived FAs using CD36 inhibitors and short hairpin RNA knockdown prevented development of the adipocyte-induced malignant phenotype. Specifically, inhibition of CD36 attenuated adipocyte-induced cholesterol and lipid droplet accumulation and reduced intracellular reactive oxygen species (ROS) content. Metabolic analysis suggested that CD36 plays an essential role in the bioenergetic adaptation of OvCa cells in the adipocyte-rich microenvironment and governs their metabolic plasticity. Furthermore, the absence of CD36 affected cellular processes that play a causal role in peritoneal dissemination, including adhesion, invasion, migration and anchorage independent growth. Intraperitoneal injection of CD36-deficient cells or treatment with an anti-CD36 monoclonal antibody reduced tumour burden in mouse xenografts. Moreover, a matched cohort of primary and metastatic human ovarian tumours showed upregulation of CD36 in the metastatic tissues, a finding confirmed in three public gene expression data sets. These results suggest that omental adipocytes reprogram tumour metabolism through the upregulation of CD36 in OvCa cells. Targeting the stromal-tumour metabolic interface via CD36 inhibition may prove to be an effective treatment strategy against OvCa metastasis.


Assuntos
Adipócitos/fisiologia , Antígenos CD36/genética , Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/patologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Animais , Células Cultivadas , Técnicas de Cocultura , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , Omento/metabolismo , Regulação para Cima/genética
20.
Cancer Res ; 77(7): 1684-1696, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28202518

RESUMO

Poor prognosis of ovarian cancer, the deadliest of the gynecologic malignancies, reflects major limitations associated with detection and diagnosis. Current methods lack high sensitivity to detect small tumors and high specificity to distinguish malignant from benign tissue, both impeding diagnosis of early and metastatic cancer stages and leading to costly and invasive surgeries. Tissue microarray analysis revealed that >98% of ovarian cancers express the prolactin receptor (PRLR), forming the basis of a new molecular imaging strategy. We fused human placental lactogen (hPL), a specific and tight binding PRLR ligand, to magnetic resonance imaging (gadolinium) and near-infrared fluorescence imaging agents. Both in tissue culture and in mouse models, these imaging bioconjugates underwent selective internalization into ovarian cancer cells via PRLR-mediated endocytosis. Compared with current clinical MRI techniques, this targeted approach yielded both enhanced signal-to-noise ratio from accumulation of signal via selective internalization and improved specificity conferred by PRLR upregulation in malignant ovarian cancer. These features endow PRLR-targeted imaging with the potential to transform ovarian cancer detection. Cancer Res; 77(7); 1684-96. ©2017 AACR.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias Epiteliais e Glandulares/diagnóstico por imagem , Neoplasias Ovarianas/diagnóstico por imagem , Receptores da Prolactina/fisiologia , Animais , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Endocitose , Feminino , Gadolínio DTPA , Humanos , Camundongos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Ovarianas/metabolismo , Lactogênio Placentário/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/análise , Sensibilidade e Especificidade , Análise Serial de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA