Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Pathol ; 191(1): 144-156, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33339546

RESUMO

Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common type of dementia worldwide. There is considerable evidence of age-related disruption of proteostasis being responsible for the development of AD. The proteasome is a multicatalytic enzyme complex that degrades both normal and damaged proteins, and an age-related decline in its activity has been implicated in age-related pathologies. Although proteasomal dysfunction is assumed to be a key AD hallmark, it remains unclear whether its role in disease onset is causative or secondary. In this study, we demonstrate that mice with proteasomal dysfunction exhibited memory impairment with associated neuronal loss, accumulation of phosphorylated tau, and activation of endoplasmic reticulum (ER) stress-related apoptosis pathways. Impaired proteasomal activity also activated ER stress-related apoptosis pathways in HT-22, a murine hippocampal neuronal cell line. HT-22 cell death, caused by proteasomal inhibition, was prevented by an inhibitor of c-Jun N-terminal kinase, an ER stress-related molecule. Collective evidence suggests that impaired proteasomal activity alters proteostasis, and subsequent ER stress-mediated pathways play pivotal roles in neuronal loss. Because aging decreases proteasomal function, age-related impairment of proteasomes may be involved in the development and progression of AD in elderly patients.


Assuntos
Encéfalo/patologia , Estresse do Retículo Endoplasmático/fisiologia , Transtornos da Memória/patologia , Neurônios/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Apoptose/fisiologia , Encéfalo/metabolismo , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Proteínas tau/metabolismo
2.
Lab Invest ; 95(6): 625-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25915723

RESUMO

Chronic obstructive pulmonary disease (COPD) is a disease common in elderly people, characterized by progressive destruction of lung parenchyma and chronic inflammation of the airways. The pathogenesis of COPD remains unclear, but recent studies suggest that oxidative stress-induced apoptosis in alveolar cells contributes to emphysematous lung destruction. The proteasome is a multicatalytic enzyme complex that plays a critical role in proteostasis by rapidly destroying misfolded and modified proteins generated by oxidative and other stresses. Proteasome activity decreases with aging in many organs including lungs, and an age-related decline in proteasomal function has been implicated in various age-related pathologies. However, the role of the proteasome system in the pathogenesis of COPD has not been investigated. Recently, we have established a transgenic (Tg) mouse model with decreased proteasomal chymotrypsin-like activity, showing age-related phenotypes. Using this model, we demonstrate here that decreased proteasomal function accelerates cigarette smoke (CS)-induced pulmonary emphysema. CS-exposed Tg mice showed remarkable airspace enlargement and increased foci of inflammation compared with wild-type controls. Importantly, apoptotic cells were found in the alveolar walls of the affected lungs. Impaired proteasomal activity also enhanced apoptosis in cigarette smoke extract (CSE)-exposed fibroblastic cells derived from mice and humans in vitro. Notably, aggresome formation and prominent nuclear translocation of apoptosis-inducing factor were observed in CSE-exposed fibroblastic cells isolated from Tg mice. Collective evidence suggests that CS exposure and impaired proteasomal activity coordinately enhance apoptotic cell death in the alveolar walls that may be involved in the development and progression of emphysema in susceptible individuals such as the elderly.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/metabolismo , Fumaça/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Enfisema Pulmonar/patologia , Nicotiana
3.
Cell Rep ; 26(3): 639-651.e2, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650357

RESUMO

The thymoproteasome subunit ß5t is specifically expressed in cortical thymic epithelial cells (TECs) and generates unique peptides to support positive selection. In this study, using a mouse model ubiquitously expressing ß5t, we showed that aberrant expression of self-peptides generated by ß5t affects CD8+ T cell homeostasis, including thymic selection and maintenance of the peripheral naive pool of CD8+ T cells. In mice in which ß5t was expressed both in cortical and medullary TECs, the abundance of CD8+ lineage thymocytes was reduced, and extra-thymic expression of ß5t caused accumulation of CD8+ T cells with the memory or exhausted phenotype and induced autoreactive T cell responses. We found that thymoproteasomes are essential for positive selection but that the subsequent change in peptide repertoire in the medulla is also crucial for thymic selection and that ß5t-derived peptide must be confined to the thymus to avoid autoimmunity in peripheral tissues.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Timócitos/metabolismo , Animais , Homeostase , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA