Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Bioorg Med Chem ; 28(7): 115376, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32088125

RESUMO

Sphingomyelin synthase 2 (SMS2) has attracted attention as a drug target for the treatment of various cardiovascular and metabolic diseases. The modification of a high throughput screening hit, 2-quinolone 10, enhanced SMS2 inhibition at nanomolar concentrations with good selectivity against SMS1. To improve the pharmaceutical properties such as passive membrane permeability and aqueous solubility, adjustment of lipophilicity was attempted and 1,8-naphthyridin-2-one 37 was identified as a potent and selective SMS2 inhibitor. A significant reduction in hepatic sphingomyelin levels following repeated treatment in mice suggested that compound 37 could be an effective in vivo tool for clarifying the role of SMS2 enzyme and developing the treatment for SMS2-related diseases.


Assuntos
Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Animais , Linhagem Celular , Descoberta de Drogas , Inibidores Enzimáticos , Humanos , Masculino , Camundongos
2.
J Pharmacol Exp Ther ; 370(2): 172-181, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31182471

RESUMO

The GPR40/FFA1 receptor is a G-protein-coupled receptor expressed in the pancreatic islets and enteroendocrine cells. Here, we report the pharmacological profiles of (3S)-3-cyclopropyl-3-{2-[(1-{2-[(2,2-dimethylpropyl)(6-methylpyridin-2-yl)carbamoyl]-5-methoxyphenyl}piperidin-4-yl)methoxy]pyridin-4-yl}propanoic acid (SCO-267), a novel full agonist of GPR40. Ca2+ signaling and insulin and glucagon-like peptide-1 (GLP-1) secretion were evaluated in GPR40-expressing CHO, MIN6, and GLUTag cells. Hormone secretions and effects on fasting glucose were tested in rats. Single or repeated dosing effects were evaluated in neonatally streptozotocin-induced diabetic rats (N-STZ-1.5 rats), diet-induced obese (DIO) rats, and GPR40-knockout (Ffar1-/- ) mice. Treatment with SCO-267 activated Gq signaling in both high- and low-FFAR1-expressing CHO cells, stimulated insulin secretion in MIN6 cells, and induced GLP-1 release in GLUTag cells. When administered to normal rats, SCO-267 increased insulin, glucagon, GLP-1, glucose-dependent insulinotropic peptide, and peptide YY (PYY) secretions under nonfasting conditions. These results show the full agonistic property of SCO-267 against GPR40. Hypoglycemia was not induced in SCO-267-treated rats during the fasting condition. In diabetic N-STZ-1.5 rats, SCO-267 was highly effective in improving glucose tolerance in single and 2-week dosing studies. DIO rats treated with SCO-267 for 2 weeks showed elevated plasma GLP-1 and PYY levels, reduced food intake, and decreased body weight. In wild-type mice, SCO-267 induced GLP-1 secretion, food intake inhibition, and body weight reduction; however, these effects were abolished in Ffar1-/- mice, indicating a GPR40-dependent mechanism. In conclusion, SCO-267 stimulated islet and gut hormone secretion, improved glycemic control in diabetic rats, and decreased body weight in obese rats. These data suggest the therapeutic potential of SCO-267 for the treatment of diabetes and obesity.


Assuntos
Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Ciclopropanos/farmacologia , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/tratamento farmacológico , Obesidade/complicações , Piperidinas/farmacologia , Propionatos/farmacologia , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Animais , Células CHO , Cricetulus , Ciclopropanos/uso terapêutico , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Cães , Ingestão de Alimentos/efeitos dos fármacos , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Humanos , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Piperidinas/uso terapêutico , Propionatos/uso terapêutico , Piridinas/uso terapêutico , Ratos
3.
Bioorg Med Chem ; 26(9): 2452-2465, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29669694

RESUMO

We pursued serine palmitoyltransferase (SPT) inhibitors as novel cancer therapeutic agents based on a correlation between SPT inhibition and growth suppression of cancer cells. High-throughput screening and medicinal chemistry efforts led to the identification of structurally diverse SPT inhibitors 4 and 5. Both compounds potently inhibited SPT enzyme and decreased intracellular ceramide content. In addition, they suppressed cell growth of human lung adenocarcinoma HCC4006 and acute promyelocytic leukemia PL-21, and displayed good pharmacokinetic profiles. Reduction of 3-ketodihydrosphingosine, the direct downstream product of SPT, was confirmed under in vivo settings after oral administration of compounds 4 and 5. Their anti-tumor efficacy was observed in a PL-21 xenograft mouse model. These results suggested that SPT inhibitors might have potential to be effective cancer therapeutics.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Serina C-Palmitoiltransferase/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Piperidinas/síntese química , Piperidinas/química , Piperidinas/farmacocinética , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacocinética , Estereoisomerismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Bioorg Med Chem Lett ; 27(15): 3565-3571, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28579121

RESUMO

We report a design strategy to obtain potent DPP-4 inhibitors by incorporating salt bridge formation with Lys554 in the S1' pocket. By applying the strategy to the previously identified templates, quinoline 4 and pyridines 16a, 16b, and 17 have been identified as subnanomolar or nanomolar inhibitors of human DPP-4. Docking studies suggested that a hydrophobic interaction with Tyr547 as well as the salt bridge interaction is important for the extremely high potency. The design strategy would be useful to explore a novel design for DPP-4 inhibitors having a distinct structure with a unique binding mode.


Assuntos
Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Piridinas/química , Piridinas/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/química , Dipeptidil Peptidase 4/metabolismo , Desenho de Fármacos , Feminino , Teste de Tolerância a Glucose , Humanos , Simulação de Acoplamento Molecular , Ratos Sprague-Dawley , Ratos Wistar , Relação Estrutura-Atividade
5.
Bioorg Med Chem ; 25(21): 5995-6006, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28988629

RESUMO

The discovery of a novel series of ß-methyltryptophan (ß MeTrp) derivatives as selective and orally active non-peptide somatostatin receptor 2 (SSTR2) agonists for the treatment of Type 2 diabetes is described. In our previous research, Compound A, ß-MeTrp derivative with highly potent and selective SSTR2 agonistic activity IC50 (SSTR2/SSTR5)=0.3/>100 (nM), was identified asa drug candidate for treatment of Type 2 diabetes which lowers significantly plasma glucose level in Wistar fatty rats in its oral administrations. However, as serious increase in AUC and phospholipidosis (PLsis) were observed in its toxicological studies in rats, follow-up compounds were searched to avoid risk of PLsis with reference to their in vitro PLsis potentials evaluated on the basis of accumulation of phospholipids in HepG2 cells exposed to the compounds. It has been found that introduction of a carbonyl group onto the piperidine and piperazine or aniline moiety of compounds A and B reduced markedly the in vitro PLsis potentials. And further modification of the compounds and their evaluation led to a discovery of compounds 3k with lower in vitro PLsis potentials exhibiting lowering effect of hypoglycemia-induced glucagon secretion in SD rats (ED50=1.1mg/kg) and glucose excursion in meal tolerance test in Wistar fatty diabetic rats (MED=3.0mg/kg) in oral administrations. Compound 3k was selected asa new drug candidate of selective and orally active non-peptide SSTR2 agonists for treatment of Type 2 diabetes with low in vivo PLsis potential.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Desenho de Fármacos , Receptores de Somatostatina/agonistas , Triptofano/análogos & derivados , Administração Oral , Animais , Relação Dose-Resposta a Droga , Humanos , Masculino , Estrutura Molecular , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade , Triptofano/administração & dosagem , Triptofano/química , Triptofano/farmacologia
6.
Bioorg Med Chem ; 19(15): 4482-98, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21741847

RESUMO

Dipeptidyl peptidase IV (DPP-4) inhibition is a validated therapeutic option for type 2 diabetes, exhibiting multiple antidiabetic effects with little or no risk of hypoglycemia. In our studies involving non-covalent DPP-4 inhibitors, a novel series of quinoline-based inhibitors were designed based on the co-crystal structure of isoquinolone 2 in complex with DPP-4 to target the side chain of Lys554. Synthesis and evaluation of designed compounds revealed 1-[3-(aminomethyl)-4-(4-methylphenyl)-2-(2-methylpropyl)quinolin-6-yl]piperazine-2,5-dione (1) as a potent, selective, and orally active DPP-4 inhibitor (IC50=1.3 nM) with long-lasting ex vivo activity in dogs and excellent antihyperglycemic effects in rats. A docking study of compound 1 revealed a hydrogen-bonding interaction with the side chain of Lys554, suggesting this residue as a potential target site useful for enhancing DPP-4 inhibition.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/química , Hipoglicemiantes/uso terapêutico , Quinolinas/química , Quinolinas/uso terapêutico , Animais , Células CACO-2 , Linhagem Celular , Dipeptidil Peptidase 4/química , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacologia , Cães , Feminino , Humanos , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Lisina/metabolismo , Quinolinas/farmacocinética , Quinolinas/farmacologia , Ratos , Ratos Wistar
7.
Bioorg Med Chem ; 19(16): 4953-70, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21764322

RESUMO

The design, synthesis, and structure-activity relationships of a new class of potent and orally active non-peptide dipeptidyl peptidase IV (DPP-4) inhibitors, 3-aminomethyl-1,2-dihydro-4-phenyl-1-isoquinolones, are described. We hypothesized that the 4-phenyl group of the isoquinolone occupies the S1 pocket of the enzyme, the 3-aminomethyl group forms an electrostatic interaction with the S2 pocket, and the introduction of a hydrogen bond donor onto the 6- or 7-substituent provides interaction with the hydrophilic region of the enzyme. Based on this hypothesis, intensive research focused on developing new non-peptide DPP-4 inhibitors has been carried out. Among the compounds designed in this study, we identified 2-[(3-aminomethyl-2-(2-methylpropyl)-1-oxo-4-phenyl-1,2-dihydro-6-isoquinolinyl)oxy]acetamide (35a) as a potent, selective, and orally bioavailable DPP-4 inhibitor, which exhibited in vivo efficacy in diabetic model rats. Finally, X-ray crystallography of 35a in a complex with the enzyme validated our hypothesized binding mode and identified Lys554 as a new target-binding site available for DPP-4 inhibitors.


Assuntos
Dipeptidil Peptidase 4/efeitos dos fármacos , Inibidores da Dipeptidil Peptidase IV/síntese química , Hipoglicemiantes/síntese química , Isoquinolinas/síntese química , Administração Oral , Animais , Glicemia , Células CACO-2 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/análise , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Dipeptidil Peptidases e Tripeptidil Peptidases/análise , Dipeptidil Peptidases e Tripeptidil Peptidases/antagonistas & inibidores , Dipeptidil Peptidases e Tripeptidil Peptidases/efeitos dos fármacos , Desenho de Fármacos , Feminino , Teste de Tolerância a Glucose , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Terapia de Alvo Molecular , Peptídeos/metabolismo , Quinolonas/administração & dosagem , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacologia , Quinolonas/uso terapêutico , Ratos , Ratos Wistar , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 19(1): 172-85, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21163664

RESUMO

We have previously discovered nicotinic acid derivative 1 as a structurally novel dipeptidyl peptidase IV (DPP-4) inhibitor. In this study, we obtained the X-ray co-crystal structure between nicotinic acid derivative 1 and DPP-4. From these X-ray co-crystallography results, to achieve more potent inhibitory activity, we targeted Arg125 as a potential amino acid residue because it was located near the pyridine core, and some known DPP-4 inhibitors were reported to interact with this residue. We hypothesized that the guanidino group of Arg125 could interact with two hydrogen-bond acceptors in a bidentate manner. Therefore, we designed a series of 3-pyridylacetamide derivatives possessing an additional hydrogen-bond acceptor that could have the desired bidentate interaction with Arg125. We discovered the dihydrochloride of 1-{[5-(aminomethyl)-2-methyl-4-(4-methylphenyl)-6-(2-methylpropyl)pyridin-3-yl]acetyl}-l-prolinamide (13j) to be a potent and selective DPP-4 inhibitor that could interact with the guanidino group of Arg125 in a unique bidentate manner.


Assuntos
Acetamidas/química , Arginina/química , Inibidores da Dipeptidil Peptidase IV/farmacologia , Desenho de Fármacos , Cristalografia por Raios X , Inibidores da Dipeptidil Peptidase IV/química , Modelos Moleculares , Relação Estrutura-Atividade
9.
J Med Chem ; 63(18): 10352-10379, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32900194

RESUMO

GPR40/FFAR1 is a G-protein-coupled receptor expressed in pancreatic ß-cells and enteroendocrine cells. GPR40 activation stimulates secretions of insulin and incretin, both of which are the pivotal regulators of glycemic control. Therefore, a GPR40 agonist is an attractive target for the treatment of type 2 diabetes mellitus. Using the reported biaryl derivative 1, we shifted the hydrophobic moiety to the terminal aryl ring and replaced the central aryl ring with piperidine, generating 2-(4,4-dimethylpentyl)phenyl piperidine 4a, which had improved potency for GPR40 and high lipophilicity. We replaced the hydrophobic moiety with N-alkyl-N-aryl benzamides to lower the lipophilicity and restrict the N-alkyl moieties to the presumed lipophilic pocket using the intramolecular π-π stacking of cis-preferential N-alkyl-N-aryl benzamide. Among these, orally available (3S)-3-cyclopropyl-3-(2-((1-(2-((2,2-dimethylpropyl)(6-methylpyridin-2-yl)carbamoyl)-5-methoxyphenyl)piperidin-4-yl)methoxy)pyridin-4-yl)propanoic acid (SCO-267) effectively stimulated insulin secretion and GLP-1 release and ameliorated glucose tolerance in diabetic rats via GPR40 full agonism.


Assuntos
Benzamidas/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Piperidinas/uso terapêutico , Receptores Acoplados a Proteínas G/agonistas , Animais , Benzamidas/síntese química , Benzamidas/farmacocinética , Células CHO , Cricetulus , Hipoglicemiantes/síntese química , Hipoglicemiantes/farmacocinética , Masculino , Camundongos Endogâmicos ICR , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/farmacocinética , Ratos Sprague-Dawley , Relação Estrutura-Atividade
10.
PLoS One ; 14(9): e0222653, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525244

RESUMO

GPR40/FFAR1 is a Gq protein-coupled receptor expressed in pancreatic ß cells and enteroendocrine cells, and mediates insulin and incretin secretion to regulate feeding behavior. Several GPR40 full agonists have been reported to reduce food intake in rodents by regulating gut hormone secretion in addition to their potent glucose-lowering effects; however, detailed mechanisms of feeding suppression are still unknown. In the present study, we characterized T-3601386, a novel compound with potent full agonistic activity for GPR40, by using in vitro Ca2+ mobilization assay in Chinese hamster ovary (CHO) cells expressing FFAR1 and in vivo hormone secretion assay. We also evaluated feeding suppression and weight loss after the administration of T-3601386 and investigated the involvement of the vagal nerve in these effects. T-3601386, but not a partial agonist fasiglifam, increased intracellular Ca2+ levels in CHO cells with low FFAR1 expression, and single dosing of T-3601386 in diet-induced obese (DIO) rats elevated plasma incretin levels, suggesting full agonistic properties of T-3601386 against GPR40. Multiple doses of T-3601386, but not fasiglifam, in DIO rats showed dose-dependent weight loss accompanied by feeding suppression and durable glucagon-like peptide-1 elevation, all of which were completely abolished in Ffar1-/- mice. Immunohistochemical analysis in the nuclei of the solitary tract demonstrated that T-3601386 increased the number of c-Fos positive cells, which also disappeared in Ffar1-/- mice. Surgical vagotomy and drug-induced deafferentation counteracted the feeding suppression and weight loss induced by the administration of T-3601386. These results suggest that T-3601386 exerts incretin release and weight loss in a GPR40-dependent manner, and that afferent vagal nerves are important for the feeding suppression induced by GPR40 full agonism. Our novel findings raise the possibility that GPR40 full agonist can induce periphery-derived weight reduction, which may provide benefits such as less adverse effects in central nervous system compared to centrally-acting anti-obesity drugs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Redução de Peso/fisiologia , Animais , Glicemia/metabolismo , Glicemia/fisiologia , Células CHO , Cálcio/metabolismo , Linhagem Celular , Cricetulus , Células Enteroendócrinas/metabolismo , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Ratos Wistar , Transdução de Sinais , Nervo Vago/metabolismo , Nervo Vago/fisiologia
11.
J Med Chem ; 54(3): 831-50, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21218817

RESUMO

Inhibition of dipeptidyl peptidase IV (DPP-4) is an exciting new approach for the treatment of diabetes. To date there has been no DPP-4 chemotype possessing a carboxy group that has progressed into clinical trials. Originating from the discovery of the structurally novel quinoline derivative 1, we designed novel pyridine derivatives containing a carboxy group. In our design, the carboxy group interacted with the targeted amino acid residues around the catalytic region and thereby increased the inhibitory activity. After further optimization, we identified a hydrate of [5-(aminomethyl)-6-(2,2-dimethylpropyl)-2-ethyl-4-(4-methylphenyl)pyridin-3-yl]acetic acid (30c) as a potent and selective DPP-4 inhibitor. The desired interactions with the critical active-site residues, such as a salt-bridge interaction with Arg125, were confirmed by X-ray cocrystal structure analysis. In addition, compound 30c showed a desired preclinical safety profile, and it was encoded as TAK-100.


Assuntos
Acetatos/síntese química , Inibidores da Dipeptidil Peptidase IV/síntese química , Hipoglicemiantes/síntese química , Piridinas/síntese química , Acetatos/farmacocinética , Acetatos/farmacologia , Animais , Domínio Catalítico , Cristalografia por Raios X , Inibidores da Dipeptidil Peptidase IV/farmacocinética , Inibidores da Dipeptidil Peptidase IV/farmacologia , Cães , Feminino , Teste de Tolerância a Glucose , Humanos , Interações Hidrofóbicas e Hidrofílicas , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Modelos Moleculares , Conformação Proteica , Piridinas/farmacocinética , Piridinas/farmacologia , Quinolinas/síntese química , Quinolinas/farmacocinética , Quinolinas/farmacologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA