Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 251(Pt 1): 118572, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437902

RESUMO

The presence of nanoplastics posed a potential threat to coastal saline-alkaline wetlands where nitrogen (N) fertilizer is being implemented as an important ecological restoration measure. Notwithstanding, the effects of N inputs on plant community in polypropylene-nanoplastics (PP-NPs) coexistence environments are largely unknown. To address this, we investigated the effects of PP-NPs addition alone or combined N supply on community aboveground biomass, morphological traits, diversity, composition, niche differentiation, interspecific interactions, and assembly. Our results showed that the PP-NPs addition alone reduced community aboveground biomass and morphological traits. However, the addition of high concentration (0.5%) PP-NPs alone favored community α-diversity and reduced community stability, which could be weakened through combined N supply. Overall, the effect of PP-NPs addition alone on plant community composition was greater than that of combined N supply. We also demonstrated PP-NPs addition alone and combined N supply reduced the niche breadth of the plant community and affected the niche overlap of dominant species. In the assembly of plant communities, stochastic processes played a dominant role. We conclude that N fertilization can amend the terrestrial nanoplastics pollution, thus mitigating the effects of PP-NPs on the plant community.


Assuntos
Nitrogênio , Plantas , Áreas Alagadas , Plantas/efeitos dos fármacos , Fertilizantes/análise , Biomassa , Polipropilenos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Biodiversidade
2.
Environ Res ; 251(Pt 1): 118601, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447608

RESUMO

Urban green spaces play a crucial role in cities by providing near-natural environments that greatly impacts the health of residents. However, these green spaces have recently been scrutinized as potential reservoirs of antibiotic resistance genes (ARGs), posing significant ecological risks. Despite this concern, our understanding of the distribution, sources, and ecological risks associated with ARGs remains limited. In this study, we investigated the spatial distribution of soil ARGs using spatial interpolation and auto-correlation analysis. To apportion the source of soil ARGs in urban green spaces of Tianjin, Geo-detector method (GDM) was employed. Furthermore, we evaluated the ecological risk posed by ARGs employing risk quotients (RQ). The results of our study showed a significantly higher abundance of Quinolone resistance genes in the soil of urban green spaces in Tianjin. These genes were mainly found in the northwest, central, and eastern regions of the city. Our investigation identified three main factors contributing to the presence of soil ARGs: antibiotic production, precipitation, livestock breeding, and hospital. The results of ecological risk in RQ value showed a high risk associated with Quinolone resistance genes, followed by Aminoglycoside, Tetracycline, Multidrug, MLSB, Beta Lactam, Sulfonamide, and Chloramphenicol. Mantel-test and correlation analysis revealed that the ecological risk of ARGs was greatly influenced by soil properties and heavy metals. This study provides a new perspective on source apportionment and the ecological risk assessment of soil ARGs in urban green spaces.


Assuntos
Cidades , Microbiologia do Solo , Medição de Risco , China , Resistência Microbiana a Medicamentos/genética , Monitoramento Ambiental , Solo/química , Antibacterianos/análise , Farmacorresistência Bacteriana/genética
3.
J Environ Manage ; 345: 118665, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579603

RESUMO

Influenced by the interplay of global climate change and urbanization, urban plants have become increasingly homogenized in China. However, regional effects of biotic homogenization cannot be clearly explained due to the lack of continuous large-scale data. Thus, we explored the characteristics and regional effects of biotic homogenization, which not only contributes to the improvement of urban biodiversity, but also has important value for human well-being. Here, we analyzed the woody plants of 101 cities in 8 major urban agglomerations in China. The diversity patterns and influencing factors were explored using generalized additive, geographically weighted regression, and structural equation models. The main results were as follows: (1) The issue of woody plant homogenization is primarily manifested in urban greening species in China. (2) The characteristics of woody plant homogenization exhibit notable regional effects at a large scale. (3) Latitude, urban area, altitude and climatic factors all impact the woody plant homogenization. Thus, we found that the homogenization characteristics of urban greening species exhibit regional variations, influenced by both natural and anthropogenic factors. Finally, we suggested that urban biodiversity management should be considered specific regional environmental, both to meet the needs of residents.


Assuntos
Biodiversidade , Urbanização , Humanos , Cidades , Madeira , Plantas , China , Ecossistema
4.
J Anim Ecol ; 91(5): 983-995, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35274297

RESUMO

Populations can rapidly respond to environmental change via adaptive phenotypic plasticity, which can also modify interactions between individuals and their environment, affecting population dynamics. Bird migration is a highly plastic resource-tracking tactic in seasonal environments. However, the link between the population dynamics of migratory birds and migration tactic plasticity is not well-understood. The quality of staging habitats affects individuals' migration timing and energy budgets in the course of migration and can consequently affect individuals' breeding and overwintering performance, and impact population dynamics. Given staging habitats being lost in many parts of the world, our goal is to investigate responses of individual migration tactics and population dynamics in the face of loss of staging habitat and to identify the key processes connecting them. We started by constructing and analysing a general full-annual-cycle individual-based model with a stylized migratory population to generate hypotheses on how changes in the size of staging habitat might drive changes in individual stopover duration and population dynamics. Next, through the interrogation of survey data, we tested these hypotheses by analysing population trends and stopover duration of migratory waterbirds experiencing the loss of staging habitat. Our modelling exercise led to us posing the following hypotheses: the loss of staging habitat generates plasticity in migration tactics, with individuals remaining on the staging habitat for longer to obtain food due to a reduction in per capita food availability. The subsequent increasing population density on the staging habitat has knock-on effects on population dynamics in the breeding and overwintering stage. Our empirical results were consistent with the modelling predictions. Our results demonstrate how environmental change that impacts one energetically costly life-history stage in migratory birds can have population dynamic impacts across the entire annual cycle via phenotypic plasticity.


Assuntos
Migração Animal , Aves , Adaptação Fisiológica , Animais , Aves/fisiologia , Ecossistema , Dinâmica Populacional , Estações do Ano
5.
Front Plant Sci ; 15: 1347658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38817931

RESUMO

Biochar is a widely proposed solution for improving degraded soil in coastal wetland ecosystems. However, the impacts of biochar addition on the soil and plant communities in the wetland remains largely unknown. In this study, we conducted a greenhouse experiment using soil seed bank from a coastal saline-alkaline wetland. Three types of biochar, including Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC) and Flaveria bidentis biochar (FBC), were added to the saline-alkaline soil at ratios of 1%, 3% and 5% (w/w). Our findings revealed that biochar addition significantly increased soil pH, and increased available potassium (AK) by 3.74% - 170.91%, while reduced soil salinity (expect for 3% SBC and 5%SBC) by 28.08% - 46.93%. Among the different biochar types, the application of 5% FBC was found to be the most effective in increasing nutrients and reducing salinity. Furthermore, biochar addition generally resulted in a decrease of 7.27% - 90.94% in species abundance, 17.26% - 61.21% in community height, 12.28% - 56.42% in stem diameter, 55.34% - 90.11% in total biomass and 29.22% - 78.55% in root tissue density (RTD). In particular, such negative effects was the worst in the SBC samples. However, 3% and 5% SBC increased specific root length (SRL) by 177.89% and 265.65%, and specific root surface area (SRSA) by 477.02% and 286.57%, respectively. The findings suggested that the plant community performance was primarily affected by soil pH, salinity and nutrients levels. Furthermore, biochar addition also influenced species diversity and functional diversity, ultimately affecting ecosystem stability. Therefore, it is important to consider the negative findings indirectly indicate the ecological risks associated with biochar addition in coastal salt-alkaline soils. Furthermore, Spartina alterniflora was needed to desalt before carbonization to prevent soil salinization when using S. alterniflora biochar, as it is a halophyte.

6.
Sci Total Environ ; 912: 169275, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38086482

RESUMO

The increase in alien plant invasions poses a major threat to global biodiversity and ecosystem stability. However, the presence of microplastics (MPs) as an environmental stressor could impact the interactions between invasive and native species in an invasive plant community. Nevertheless, the community alterations and underlying mechanisms resulting from these interactions remain unclear. Herein, we systematically investigated the impacts of polyethylene (PE) and polypropylene (PP) on invasive plant communities invaded by Amaranthus palmeri through soil seed bank. The results illustrated that MPs markedly declined community height and biomass, and altered community structure, low-dose MPs could prominently increase community invasion resistance, but reduced community stability. The niche width and niche overlap of A. palmeri and S. viridis declined when exposed to high-dose MPs, but MPs elicited a significant rise in the niche width of S. salsa. PP had the potential to reduce the diversity of invasive plant community. Structural equation model revealed that PP addition could change soil total phosphorus content, thereby leading to a reduction of the community stability. Our study helps to fill the knowledge gap regarding the effects of MPs on invasive plant communities and provide new perspectives for invasive plant management.


Assuntos
Amaranthus , Microplásticos , Plásticos , Ecossistema , Plantas , Solo/química , Polipropilenos
7.
Sci Total Environ ; 899: 165677, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37478952

RESUMO

It is thought remediating cadmium pollution with biochar can affect plant traits. However, the potential impact of this practice on plant communities is poorly understood. Here, we established natural-germinated plant communities using soil seed bank from a saline-alkaline wetland and applied a biochar treatment in Cd-polluted wetland soil. The outcomes illustrated that Juglans regia biochar (JBC), Spartina alterniflora biochar (SBC), and Flaveria bidentis biochar (FBC) promoted exchangeable Cd transform into FeMn oxide bound Cd. Additionally, most biochar addition reduced species abundance, root-shoot ratio, biomass, diversity, and community stability, yet enhanced community height. Among all treatments, the 5 % SBC demonstrated the most significant reduction in species abundance, biomass, species richness and functional richness. Specifically, it resulted in a reduction of 92.80 % in species abundance, 73.80 % in biomass, 66.67 % in species richness, and 95.14 % in functional richness compared to the CK. We also observed changes in root morphological traits and community structure after biochar addition. Soil pH, salinity, and nutrients played a dominant role in shaping plant community. These findings have implications for biodiversity conservation, and the use of biochar for the remediation of heavy metals like cadmium should be approached with caution due to its potential negative impacts on plant communities.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Áreas Alagadas , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química
8.
Sci Total Environ ; 845: 157319, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839892

RESUMO

Understanding the spatial distribution pattern change and driving factors behind ecosystem health is essential to ecosystem management and restoration. However, in the research of regional ecosystem health, there is little research on ecosystem health in coastal regions, and there is little exploration of its temporal and spatial pattern change and its driving factors. In this study, we use the Vigor-Organization-Resilience-Services (VORS) model and marine ecosystem health index to diagnose the ecosystem health of the whole coastal area of China over the last 20 years, and find the main contributing factors affecting ecosystem health with the help of geographic detectors and geographic weighted regression analysis. Our results show that: (1) the ecosystem health level in the south of the coastal region is higher than that in the north, mainly with 30° north latitude as the main dividing line. (2) The regions with high change rate are mainly concentrated in Bohai Bay, the Yangtze River Estuary, Hangzhou Bay and the Pearl River Estuary, and the change is mainly negative. (3) Both natural and human factors have an impact on ecosystem health, and the influencing factors are different on different scales. The interaction between different factors is greater than the impact of a single factor on ecosystem health. The study puts forward a new evaluation framework for the study of ecosystem health in coastal areas, which can be applied to other coastal areas with similar conditions, and can help the sustainable and healthy development of coastal areas.


Assuntos
Ecossistema , Rios , China , Conservação dos Recursos Naturais , Estuários , Análise Fatorial , Humanos
9.
Sci Total Environ ; 793: 148577, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34328989

RESUMO

Plastic gauzes have been widely used in the BTH region against haze events and for agricultural practices. The breakage of plastic gauzes would lead to the release of microplastics into soils, but it is difficult to estimate the inputs due to their wide implementation. In this study, we have conducted an estimation model based on the remote sensing technology for plastic gauze identification and the data from field experiments and literature. This model first managed to interpret the distribution of plastic gauzes from the Landsat8 images with the average overall accuracy at 0.92 and the average kappa at 0.77. By deeming the implementation duration of plastic gauzes from their distribution and using the breakage rates of plastic materials in soils reported in the literature, the model estimated that on average 1629.68 tons of microplastics have been released to soils from plastic gauze annually in the BTH region. Comparing with the microplastics released from other sources (e.g., personal care products, household dusts, laundry, and tire wear), plastic gauze could be a considerable contributor to soil microplastics.


Assuntos
Microplásticos , Plásticos , Agricultura , Monitoramento Ambiental , Solo
10.
Ying Yong Sheng Tai Xue Bao ; 25(8): 2311-6, 2014 Aug.
Artigo em Zh | MEDLINE | ID: mdl-25509083

RESUMO

The thickness of surface soil, the covering thickness and the number of adding arbor seeds are all important factors to be considered in the application of soil seed bank (SSB) for vegetation recovery. To determine the optimal conditions, the Box-Behnken central composite design with three parameters and three levels was conducted and Design-Expert was used for response surface optimization. Finally, the optimal model and optimal level of each parameter were selected. The quadratic model was more suitable for response surface optimization (P < 0.0001), indicating the model had good statistical significance which could express ideal relations between all the independent variable and dependent variable. For the optimum condition, the thickness of surface soil was 4.3 cm, the covering thickness was 2 cm, and the number of adding arbor seeds was 224 ind x m(-2), under which the number of germinated seedlings could be reached up to 6222 plants x m(-2). During the process of seed germination, significant interactions between the thickness of surface soil and the covering thickness, as well as the thickness of surface soil and the number of adding arbor seeds were found, but the relationship between the covering thickness and the number of adding arbor seeds was relatively unremarkable. Among all the parameters, the thickness of surface soil was the most important one, which had the steepest curve and the largest standardized coefficient.


Assuntos
Conservação dos Recursos Naturais/métodos , Plântula/crescimento & desenvolvimento , Solo , Germinação , Sementes
12.
Ying Yong Sheng Tai Xue Bao ; 20(11): 2832-8, 2009 Nov.
Artigo em Zh | MEDLINE | ID: mdl-20136024

RESUMO

Soil seed bank has the unique regional species composition and genetic characteristics, and plays important roles in maintaining species diversity and population density. Topsoil, as a kind of revegetation materials, has the potential in vegetation restoration. Based on the Japanese literatures, this paper introduced the characteristics and contents of revegetation with topsoil, and discussed the revegetation modes from the aspects of topsoil mixing ratio, slope surface condition, and topsoil collection depth. The application cases of topsoil in various habitat types such as forests, roads, wetlands, and abandoned lands were also introduced. Some suggestions to the further researches on topsoil application in vegetation restoration were proposed, e.g., to strengthen the practical research of topsoil, to determine the appropriate techniques and targets of topsoil application as well as the survey methods and applicability standards, and to develop the low cost and high-efficient new application ways of topsoil.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental/métodos , Sementes , Solo , Árvores/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Ecologia , Japão , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA