Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurovirol ; 30(1): 57-70, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167982

RESUMO

In recent years, we have seen the widespread devastations and serious health complications manifested by COVID-19 globally. Although we have effectively controlled the pandemic, uncertainties persist regarding its potential long-term effects, including prolonged neurological issues. To gain comprehensive insights, we conducted a meta-analysis of mass spectrometry-based proteomics data retrieved from different studies with a total of 538 COVID-19 patients and 523 healthy controls. The meta-analysis revealed that top-enriched pathways were associated with neurological disorders, including Alzheimer's (AD) and Parkinson's disease (PD). Further analysis confirmed a direct correlation in the expression patterns of 24 proteins involved in Alzheimer's and 23 proteins in Parkinson's disease with COVID-19. Protein-protein interaction network and cluster analysis identified SNCA as a hub protein, a known biomarker for Parkinson's disease, in both AD and PD. To the best of our knowledge, this is the first meta-analysis study providing proteomic profiling evidence linking COVID-19 to neurological complications.


Assuntos
Doença de Alzheimer , Biomarcadores , COVID-19 , Doença de Parkinson , Mapas de Interação de Proteínas , Proteoma , SARS-CoV-2 , COVID-19/sangue , COVID-19/virologia , COVID-19/metabolismo , Humanos , Doença de Parkinson/virologia , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Doença de Parkinson/genética , Doença de Alzheimer/sangue , Doença de Alzheimer/virologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , alfa-Sinucleína/sangue , alfa-Sinucleína/metabolismo , Proteômica/métodos
2.
Andrologia ; 54(1): e14253, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34549825

RESUMO

The incidence of sub-fertility is higher in crossbred bulls compared to zebu bulls. In the present study, we analysed the metabolomic profile of seminal plasma from crossbred and zebu bulls and uncovered differentially expressed metabolites between these two breeds. Using a high-throughput LC-MS/MS-based approach, we identified 990 and 1,002 metabolites in crossbred and zebu bull seminal plasma respectively. After excluding the exogenous metabolites, we found that 50 and 68 putative metabolites were unique to crossbred and zebu bull seminal plasma, respectively, whilst 87 metabolites were common to both. After data normalisation, 63 metabolites were found to be dysregulated between crossbred and zebu bull seminal plasma. Observed pathways included Linoleic acid metabolism (observed metabolite was phosphatidylcholine) in crossbred bull seminal plasma whereas inositol phosphate metabolism (observed metabolites were phosphatidylinositol-3,4,5-trisphosphate/inositol 1,3,4,5,6-pentakisphosphate/myo-inositol hexakisphosphate) was observed in zebu bull seminal plasma. Abundance of Tetradecanoyl-CoA was significantly higher, whilst abundance of Taurine was significantly lower in crossbred bull seminal plasma. In conclusion, the present study established the seminal plasma metabolomic profile in crossbred and zebu bulls and suggest that increased lipid peroxidation coupled with low concentrations of antioxidants in seminal plasma might be associated with high incidence of sub-fertility in crossbred bulls.


Assuntos
Sêmen , Espermatozoides , Animais , Bovinos , Cromatografia Líquida , Masculino , Metabolômica , Espectrometria de Massas em Tandem
3.
Phytother Res ; 36(5): 2207-2222, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35307886

RESUMO

Parkinson's disease (PD) is an age-associated progressive neurodegenerative movement disorder, and its management strategies are known to cause complications with prolonged usage. We aimed to explore the neuroprotective mechanism of the Indian traditional medicine Yashtimadhu, prepared from the dried roots of Glycyrrhiza glabra L. (licorice) in the rotenone-induced cellular model of PD. Retinoic acid-differentiated IMR-32 cells were treated with rotenone (PD model) and Yashtimadhu extract. Mass spectrometry-based untargeted and targeted metabolomic profiling was carried out to discover altered metabolites. The untargeted metabolomics analysis highlighted the rotenone-induced dysregulation and Yashtimadhu-mediated restoration of metabolites involved in the metabolism of nucleic acids, amino acids, lipids, and citric acid cycle. Targeted validation of citric acid cycle metabolites showed decreased α-ketoglutarate and succinate with rotenone treatment and rescued by Yashtimadhu co-treatment. The dysregulation of the citric acid cycle by rotenone-induced energetic stress via dysregulation of the mTORC1-AMPK1 axis was prevented by Yashtimadhu. Yashtimadhu co-treatment restored rotenone-induced ATG7-dependent autophagy and eventually caspases-mediated cell death. Our analysis links the metabolic alterations modulating energy stress and autophagy, which underlies the Yashtimadhu-mediated neuroprotection in the rotenone-induced cellular model of PD.


Assuntos
Glycyrrhiza , Fármacos Neuroprotetores , Doença de Parkinson , Autofagia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Metabolômica , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Rotenona/farmacologia
4.
J Proteome Res ; 20(5): 2687-2703, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33844560

RESUMO

Gastric cancer is the fifth most common cancer and the third leading cause of cancer-related death worldwide. We showed previously that calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2), a serine-threonine kinase, is highly expressed in gastric cancer and leads to progression. In the present study, we identified the molecular networks involved in CAMKK2-mediated progression of gastric adenocarcinoma. Treatment of gastric cancer cell lines with a CAMKK2 inhibitor, STO-609, resulted in decreased cell migration, invasion, and colony-forming ability and a G1/S-phase arrest. In addition, tandem mass tag (TMT)-based quantitative proteomic analysis resulted in the identification of 7609 proteins, of which 219 proteins were found to be overexpressed and 718 downregulated (1.5-fold). Our data identified several key downregulated proteins involved in cell division and cell proliferation, which included DNA replication licensing factors, replication factor C, origin recognition complex, replication protein A and GINS, and mesenchymal markers, upon CAMKK2 inhibition. Immunoblotting and immunofluorescence results showed concordance with our mass spectroscopy data. Taken together, our study supports CAMKK2 as a novel therapeutic target in gastric cancer.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Neoplasias Gástricas , Cálcio , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Carcinogênese/genética , Humanos , Proteômica , Neoplasias Gástricas/genética
5.
Mol Carcinog ; 60(11): 769-783, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34437731

RESUMO

Although CAMKK2 is overexpressed in several cancers, its role and relevant downstream signaling pathways in gastric cancer (GC) are poorly understood. Treatment of AGS GC cells with a CAMKK2 inhibitor, STO-609, resulted in decreased cell proliferation, cell migration, invasion, colony-forming ability, and G1/S-phase arrest. Quantitative phosphoproteomics in AGS cells with the CAMKK2 inhibitor led to the identification of 9603 unique phosphosites mapping to 3120 proteins. We observed decreased phosphorylation of 1101 phosphopeptides (1.5-fold) corresponding to 752 proteins upon CAMKK2 inhibition. Bioinformatics analysis of hypo-phosphorylated proteins revealed enrichment of MAPK1/MAPK3 signaling. Kinase enrichment analysis of hypo-phosphorylated proteins using the X2K Web tool identified ERK1, cyclin-dependant kinase 1 (CDK1), and CDK2 as downstream substrates of CAMKK2. Moreover, inhibition of CAMKK2 and MEK1 resulted in decreased phosphorylation of ERK1, CDK1, MCM2, and MCM3. Immunofluorescence results were in concordance with our mass spectroscopy data and Western blot analysis results. Taken together, our data reveal the essential role of CAMKK2 in the pathobiology of GC through the activation of the MEK/ERK1 signaling cascade.


Assuntos
Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Naftalimidas/farmacologia , Proteômica/métodos , Neoplasias Gástricas/metabolismo , Proteína Quinase CDC2/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida , Quinase 2 Dependente de Ciclina/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Espectrometria de Massas em Tandem
6.
Reprod Fertil Dev ; 33(6): 427-436, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33775276

RESUMO

Poor semen quality and infertility/subfertility are more frequent in crossbred than zebu bulls. Using a high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach, we established the preliminary metabolomic profile of crossbred and zebu bull spermatozoa (n=3 bulls each) and identified changes in sperm metabolomics between the two groups. In all, 1732 and 1240 metabolites were detected in zebu and crossbred bull spermatozoa respectively. After excluding exogenous metabolites, 115 and 87 metabolites were found to be unique to zebu and crossbred bull spermatozoa respectively whereas 71 metabolites were common to both. In the normalised data, 49 metabolites were found to be differentially expressed between zebu and crossbred bull spermatozoa. The significantly enriched (P<0.05) pathways in spermatozoa were taurine and hypotaurine metabolism (observed metabolites taurine and hypotaurine) in zebu and glycerophospholipid metabolism (observed metabolites phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine) in crossbred bulls. The abundance of nitroprusside (variable importance in projection (VIP) score >1.5) was downregulated, whereas that of l-cysteine, acetyl coenzyme A and 2'-deoxyribonucleoside 5'-diphosphate (VIP scores >1.0) was upregulated in crossbred bull spermatozoa. In conclusion, this study established the metabolomic profile of zebu and crossbred bull spermatozoa and suggests that aberrations in taurine, hypotaurine and glycerophospholipid metabolism may be associated with the higher incidence of infertility/subfertility in crossbred bulls.


Assuntos
Bovinos/fisiologia , Cruzamentos Genéticos , Fertilidade/genética , Metaboloma , Espermatozoides/fisiologia , Animais , Bovinos/genética , Doenças dos Bovinos/genética , Glicerofosfolipídeos/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/veterinária , Masculino , Redes e Vias Metabólicas , Metabolômica , Análise do Sêmen/veterinária , Especificidade da Espécie , Espermatozoides/metabolismo , Taurina/análogos & derivados , Taurina/metabolismo
7.
J Proteome Res ; 19(8): 2950-2963, 2020 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-32618472

RESUMO

Bleomycin (BLM)-induced pulmonary fibrosis is characterized by inflammation in the alveoli, subsequent deposition of extracellular matrix (ECM) and myofibroblasts, and an impaired fibrinolytic system. Here, we describe major hematological changes, the IL-17A-mediated p53-fibrinolytic pathway, and the high throughput hits of liquid chromatography-mass spectrometry (LC-MS) analysis during the progression of pulmonary fibrosis and the therapeutic potential of curcumin against disease progression. C57BL/6 mice were exposed to BLM, followed by curcumin intervention after 24 and 48 h. Mice were sacrificed after 7 days to validate the hematological parameters, molecular pathways, and proteomics. Various techniques such as western blotting, immunofluorescence, reverse transcriptase polymerase chain reaction (RT-PCR), hematoxylin and eosin staining, Masson's trichrome staining, and immunohistochemistry were used to validate the proposed theory. LC-MS analysis was performed using a Q-Orbitrap mass spectrometer. The Schrödinger approach was used to perform the in silico molecular docking studies. BLM-exposed mice exhibited gradual weight loss and altered lung morphology; however, these were reversed by curcumin treatment. Significant changes in the hematological parameters confirmed the severity of BLM exposure in the mice, and expression of IL-17A-mediated p53-fibrinolytic system components and alveolar epithelial cell (AEC) apoptosis further confirmed the pathophysiology of pulmonary fibrosis. Differentially expressed proteins were characterized and mapped using the proteomics approach. A strong interaction of curcumin is observed with p53, uPA, and PAI-I proteins. The key role of IL-17A-mediated inflammation in the impairment of the p53-fibrinolytic system and AEC apoptosis was confirmed during BLM-induced pulmonary fibrosis. Therapeutic efficacy of curcumin exhibited a protective role against the progression of pulmonary fibrosis, which promises potent therapeutic modality to target the IL-17A-mediated p53-fibrinolytic system during pulmonary fibrosis.


Assuntos
Curcumina , Fibrose Pulmonar , Animais , Bleomicina/toxicidade , Curcumina/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/genética , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Proteômica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico
8.
Mol Reprod Dev ; 87(6): 692-703, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32452071

RESUMO

The objective of the study was to identify the fertility-associated metabolites in bovine spermatozoa using liquid chromatography-mass spectrometry (LC-MS). Six Holstein Friesian crossbred bulls (three high-fertile and three low-fertile bulls) were the experimental animals. Sperm proteins were isolated and protein-normalized samples were processed for metabolite extraction and subjected to LC-MS/MS analysis. Mass spectrometry data were processed using iMETQ software and metabolites were identified using Human Metabolome DataBase while, Metaboanalyst 4.0 tool was used for statistical and pathway analysis. A total of 3,704 metabolites belonging to various chemical classes were identified in bull spermatozoa. After sorting out exogenous metabolites, 56 metabolites were observed common to both the groups while 44 and 35 metabolites were found unique to high- and low-fertile spermatozoa, respectively. Among the common metabolites, concentrations of 19 metabolites were higher in high-fertile compared to low-fertile spermatozoa (fold change > 1.00). Spermatozoa metabolites with variable importance in projections score of more than 1.5 included hypotaurine, d-cysteine, selenocystine. In addition, metabolites such as spermine and l-cysteine were identified exclusively in high-fertile spermatozoa. Collectively, the present study established the metabolic profile of bovine spermatozoa and identified the metabolomic differences between spermatozoa from high- and low-fertile bulls. Among the sperm metabolites, hypotaurine, selenocysteine, l-malic acid, d-cysteine, and chondroitin 4-sulfate hold the potential to be recognized as fertility-associated metabolites.


Assuntos
Bovinos/metabolismo , Fertilidade/fisiologia , Metaboloma/fisiologia , Espermatozoides/metabolismo , Animais , Cromatografia Líquida , Bases de Dados de Proteínas , Humanos , Masculino , Metabolômica/métodos , Mapeamento de Peptídeos/métodos , Mapeamento de Peptídeos/veterinária , Análise do Sêmen/métodos , Análise do Sêmen/veterinária , Espermatozoides/química , Espectrometria de Massas em Tandem
9.
Curr Microbiol ; 77(8): 1780-1789, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32328751

RESUMO

The red pigment production by Talaromyces purpureogenus KKP, a soil isolate, was optimized by response surface methodology (RSM) in the present study. The cultural parameters, such as pH, temperature, dextrose, and peptone concentrations, were optimized for red pigment production using the central composite design (CCD) experimental design. A second-order quadratic model was used to calculate the relationships between the values at different levels of response. The optimum values of the selected variables under coded factors are 6.0, 27 °C, 2.25%, and 1.10% for pH, temperature, dextrose, and peptone, respectively. The selected variables were most effective in the enhancement of red pigment production at optimized culture conditions. In addition to optimization, the antioxidant activity of the pigment isolated in the present study was found to be promising with IC50 value (40 µg/ml). The HRMS data revealed the identification of delphinidin, limonene, 6-hydroxymethyl-7,8-dihydropterin, D-mannose 6-phosphate, and CDP-DG (18:0/18:0). The results of the present investigation will be added to the existing literature of red pigment production and its optimization by T. purpureogenus.


Assuntos
Antioxidantes/química , Meios de Cultura/química , Pigmentos Biológicos/biossíntese , Talaromyces/química , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Concentração Inibidora 50 , Temperatura
10.
OMICS ; 28(3): 125-137, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527276

RESUMO

Nematode infections are common in both humans and livestock, with major adverse planetary health and economic impacts. Wuchereria bancrofti is a parasitic nematode that causes lymphatic filariasis, a neglected tropical disease that can lead to severe disability and deformity worldwide. For the long-term survival of the bancroftian parasites in the host, a complex immune invasion strategy is involved through immunomodulation. Therefore, immunomodulation can serve as a site of research and innovation for molecular targets. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine crucial to the host antimicrobial alarm system and stress response. Interestingly, the nematode parasite W. bancrofti also produces two homologs of MIF (Wba-MIF1 and 2). Using a mass spectrometry-based phosphoproteomics approach, we report new findings on the immunomodulatory effect and signaling mechanism of Wba-MIF2 in macrophage cells. Accordingly, we observed 1201 phosphorylated sites on 467 proteins. Out of the 1201 phosphorylated sites, 1075, 117, and 9 were found on serine (S), threonine (T), and tyrosine (Y) residues, respectively. Our bioinformatics analysis led to identification of major pathways, including spliceosomes, T cell receptor signaling pathway, Th17 differentiation pathway, interleukin-17 signaling pathway, and insulin signaling pathway upon Wba-MIF2 treatment. Wba-MIF2 treatment also enriched CDK4, CDK1, and DNAPK kinases. The comparison of the signaling pathway of Wba-MIF2 with that of human-MIF suggests both share similar signaling pathways. These findings collectively offer new insights into the role and mechanism of Wba-MIF2 as an immunomodulator and inform future diagnostics and drug discovery research for W. bancrofti.


Assuntos
Anti-Infecciosos , Filariose Linfática , Fatores Inibidores da Migração de Macrófagos , Parasitos , Animais , Humanos , Wuchereria bancrofti/metabolismo , Parasitos/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Filariose Linfática/parasitologia
11.
Proteomics Clin Appl ; 18(2): e2200054, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37787895

RESUMO

AIM: Hypoxic Ischemic Encephalopathy (HIE) is one of the principal causes of neonatal mortality and long-term morbidity worldwide. The neonatal signs of mild cerebral injury are subtle, making an early precise diagnosis difficult. Delayed detection, poor prognosis, and lack of specific biomarkers for the disease are increasing mortality rates. In this study, we intended to identify specific biomarkers using comparative proteomic analysis to predict the severity of perinatal asphyxia so that its outcome can also be prevented. EXPERIMENTAL DESIGN: A case-control study was conducted on 38 neonates, and urine samples were collected within 24 and 72 h of life. A tandem mass spectrometry-based quantitative proteomics approach, followed by validation via sandwich ELISA, was performed. RESULTS: The LC-MS/MS-based proteomics analysis resulted in the identification of 1201 proteins in urine, with 229, 244, and 426 being differentially expressed in HIE-1, HIE-2, and HIE-3, respectively. Axon guidance, Diseases of programmed cell death, and Detoxification of reactive oxygen species pathways were significantly enriched in mild HIE versus severe HIE. Among the differentially expressed proteins in various stages of HIE, we chose to validate four proteins - APP, AGT, FABP1, and FN1 - via sandwich ELISA. Individual and cumulative ROC curves were plotted. AGT and FABP1 together showed high sensitivity, specificity, and accuracy as potential biomarkers for early diagnosis of HIE. CONCLUSION: Establishing putative urinary biomarkers will facilitate clinicians to more accurately screen neonates for brain injury and monitor the disease progression. Prompt treatment of neonates may reduce mortality and neurodevelopmental impairment.


Assuntos
Hipóxia-Isquemia Encefálica , Acidente Vascular Cerebral , Humanos , Recém-Nascido , Feminino , Gravidez , Hipóxia-Isquemia Encefálica/diagnóstico , Hipóxia-Isquemia Encefálica/etiologia , Estudos de Casos e Controles , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Biomarcadores , Acidente Vascular Cerebral/complicações
12.
Mol Neurobiol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814535

RESUMO

Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., two nootropics, are recognized in Indian Ayurvedic texts. Studies have attempted to understand their action as memory enhancers and neuroprotectants, but many molecular aspects remain unknown. We propose that Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb. share common neuroprotective mechanisms. Mass spectrometry-based untargeted metabolomics and network pharmacology approach were used to identify potential protein targets for the metabolites from each extract. Phytochemical analyses and cell culture validation studies were also used to assess apoptosis and ROS activity using aqueous extracts prepared from both herbal powders. Further, docking studies were also performed using the LibDock protocol. Untargeted metabolomics and network pharmacology approach unveiled 2751 shared metabolites and 3439 and 2928 non-redundant metabolites from Bacopa monnieri and Centella asiatica extracts, respectively, suggesting a potential common neuroprotective mechanism among these extracts. Protein-target prediction highlighted 92.4% similarity among the proteins interacting with metabolites for these extracts. Among them, kinases mapped to MAPK, mTOR, and PI3K-AKT signaling pathways represented a predominant population. Our results highlight a significant similarity in the metabolome of Bacopa monnieri (L.) Wettst and Centella asiatica (L.) Urb., and their potential protein targets may be attributed to their common neuroprotective functions.

13.
Acta Trop ; 252: 107142, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38331083

RESUMO

Helminth parasites modulate the host immune system to ensure a long-lasting asymptomatic form of infection generally, mediated by the secretion of immunomodulatory molecules and one such molecule is a homologue of human host cytokine, Macrophage migratory Inhibitory Factor (hMIF). In this study, we sought to understand the role of homologue of hMIF from the lymphatic filarial parasite, Wuchereria bancrofti (Wba-MIF2), in the immunomodulation of the Streptozotocin (STZ)-induced Type1 Diabetes Mellitus (T1DM) animal model. Full-length recombinant Wba-MIF2 was expressed and found to have both oxidoreductase and tautomerase activities. Wba-MIF2 recombinant protein was treated to STZ induced T1DM animals, and after 5 weeks pro-inflammatory (IL-1, IL-2, IL-6, TNF-α, IFN-γ) and anti-inflammatory (IL-4, IL-10) cytokines and gene expressions were determined in sera samples and spleen respectively. Pro-inflammatory and anti-inflammatory cytokine levels were significantly (p<0.05) up-regulated and down-regulated respectively, in the STZ-T1DM animals, as compared to treated groups. Histopathology showed macrophage infiltration and greater damage of islets of beta cells in the pancreatic tissue of STZ-T1DM animals, than Wba-MIF2 treated STZ-T1DM animals. The present study clearly showed the potential of Wba-MIF2 as an immunomodulatory molecule, which could modulate the host immune system in the STZ-T1DM mice model from a pro-inflammatory to anti-inflammatory milieu.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Filarioidea , Fatores Inibidores da Migração de Macrófagos , Parasitos , Humanos , Animais , Camundongos , Wuchereria bancrofti , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Parasitos/metabolismo , Estreptozocina , Fatores Imunológicos , Diabetes Mellitus Experimental/genética , Anti-Inflamatórios , Oxirredutases Intramoleculares
14.
J Orthop ; 35: 7-12, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36325248

RESUMO

BACKGROUND: Tibial eminence fracture is an intra-articular fracture of bony attachment of ACL. The displaced fragment could hinder the mobility of the knee and may lead joint instabilty; therefore, requires fixation. Arthroscopic suture and screw fixation are the widely used surgical modalities for eminence fractures of the tibia. Past studies have not yet depicted the superiority of one method over the other. Through this cohort study, comparison of the clinical and functional outcomes of these two surgical methods was done. METHODS: A prospective, randomized, interventional study was conducted from December 2019 to January 2022 for comparing the clinical outcome of arthroscopic pull through suture fixation and arthroscopic antegrade cancellous screw fixation in skeletally mature individuals. Ninety patients (45 in each group) were randomly assigned and treated with the above two methods. A comprehensive clinical analysis was done after nine months of surgery for assessment of functional outcome, ligament laxity, range of motion, and complications if any. RESULTS: 65.55% of anterior tibial eminence fractures were caused by road traffic accidents followed by sports injuries (28.88%). The postoperative mean subjective IKDC score in the suture group was 91.36 and for the screw fixation group was 85.71 (p = 0.001). After nine months of surgery, the mean LKS was 91.96 in patients treated with suture fixation and 86.00 in patients treated with screw fixation (p = 0.001). Pivot shift grading was grade 3 in one patient of the suture group and in three patients of the screw group (p = 0.319). Seven patients who had screw fixation required re-surgery for removal of the implant; however, no such complication was seen in the suture fixation group. CONCLUSION: Arthroscopic pull-through suture fixation of tibial avulsion of ACL in skeletally mature patients seems to be a superior intervention over arthroscopic screw fixation with the benefits of better clinical and functional outcomes and decreased chances of re-surgery.

15.
J Biomol Struct Dyn ; 41(24): 15196-15206, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37029757

RESUMO

The calcium/calmodulin dependent protein kinase kinase 2 (CAMKK2) plays a key role in regulation of intracellular calcium levels and signaling pathways. It is involved in activation of downstream signaling pathways that regulate various cellular processes. Dysregulation of CAMKK2 activity has been linked to various diseases including cancer, suggesting that CAMKK2 inhibitors might be beneficial in oncological, metabolic and inflammatory indications. The most pressing issues in small molecule discovery are synthesis feasibility, novel chemical structure and desired biological characteristics. To circumvent this constraint, we employed 'DrugspaceX' for rapid lead identification, followed by repositioning seven FDA-approved drugs for CAMKK2 inhibition. Further, first-level transformation (Set1 analogues) was performed in 'DrugspaceX', followed by virtual screening. The t-SNE visualization revealed that the transformations surrounding Rucaparib, Treprostinil and Canagliflozin are more promising for developing CAMKK2 inhibitors. Second, using the top-ranked Set1 analogues, Set2 analogues were generated, and virtual screening revealed the top-ranked five analogues. Among the top five Set2 analogues, DE273038_5 had the lowest docking score of -11.034 kcal/mol and SA score of 2.59, retaining the essential interactions with Hotspot residues LYS194 and VAL270 across 250 ns simulation period. When compared to the other four compounds, the ligand effectiveness score was 0.409, and the number of rotatable penalties was only three. Further, DE273038_5 after two rounds of transformations was discovered to be novel and had not been previously described in other databases. These data suggest that the new candidate DE273038_5 is likely to have inhibitory activity at the CAMKK2 active site, implying potential therapeutic use.Communicated by Ramaswamy H. Sarma.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Cálcio , Cálcio/metabolismo , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Domínio Catalítico , Transdução de Sinais
16.
J Cell Commun Signal ; 17(3): 1089-1095, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36715855

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) signals through a multi-component receptor system predominantly consisting of glycosyl-phosphatidylinositol-anchored GDNF family receptor alpha-1 (GFRα1) and the Rearranged during transfection (RET) receptor tyrosine kinase. GDNF/RET signaling is vital to the central and peripheral nervous system, kidney morphogenesis, and spermatogenesis. In addition, the dysregulation of the GDNF/RET signaling has been implicated in the pathogenesis of cancers. Despite the extensive research on GDNF/RET signaling, a molecular network of reactions induced by GDNF reported across the published literature. However, a comprehensive GDNF/RET pathway resource is currently unavailable. We describe an integrated signaling pathway reaction map of GDNF/RET consisting of 1151 molecular reactions. These include information pertaining to 52 molecular association events, 70 enzyme catalysis events, 36 activation/inhibition events, 22 translocation events, 856 gene regulation events, and 115 protein-level expression events induced by GDNF in diverse cell types. We developed a comprehensive GDNF/RET signaling network map based on these molecular reactions. The pathway map was made accessible through WikiPathways database ( https://www.wikipathways.org/index.php/Pathway:WP5143 ). Biocuration and development of gene regulatory network map of GDNF/RET signaling pathway.

17.
Chin J Traumatol ; 15(5): 303-5, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23069104

RESUMO

Elbow dislocation with concomitant diaphyseal fractures of radius and ulna has been reported rarely. This injury could be included in Monteggia equivalent lesions based on the mechanism of injury, radiographic pattern and method of treatment as described by Bado. We report a rare case of Monteggia equivalent lesion in an adult with unclear mechanism of injury. The possible mechanism of injury, its management and the follow-up results were described. An attempt to solve the controversy regarding whether labeling it as type 1 or type 2 was made.


Assuntos
Fratura de Monteggia , Rádio (Anatomia) , Adulto , Cotovelo , Humanos , Luxações Articulares , Rádio (Anatomia)/lesões , Fraturas do Rádio/terapia , Ulna
18.
Bioinformation ; 18(3): 214-218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518130

RESUMO

Neo-antigens presented on cell surface play a pivotal role in the success of immunotherapies. Peptides derived from mutant proteins are thought to be the primary source of neo-antigens presented on the surface of cancer cells. Mutation data from cancer genome sequencing is often used to predict cancer neo-antigens. However, this strategy is associated with significant false positives as many coding mutations may not be expressed at the protein level. Hence, we describe a computational workflow to integrate genomic and proteomic data to predictpotential neo-antigens.

19.
Front Genet ; 13: 854764, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646067

RESUMO

Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.

20.
Cells ; 11(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35011700

RESUMO

Interleukin-33 (IL-33), a member of the IL-1 superfamily cytokines, is an endogenous danger signal and a nuclear-associated cytokine. It is one of the essential mediators of both innate and adaptive immune responses. Aberrant IL-33 signaling has been demonstrated to play a defensive role against various infectious and inflammatory diseases. Although the signaling responses mediated by IL-33 have been previously reported, the temporal signaling dynamics are yet to be explored. To this end, we applied quantitative temporal phosphoproteomics analysis to elucidate pathways and proteins induced by IL-33 in THP-1 monocytes. Employing a TMT labeling-based quantitation and titanium dioxide (TiO2)-based phosphopeptide enrichment strategy followed by mass spectrometry analysis, we identified and quantified 9448 unique phosphopeptides corresponding to 3392 proteins that showed differential regulation. Of these, 171 protein kinases, 60 phosphatases and 178 transcription factors were regulated at different phases of IL-33 signaling. In addition to the confirmed activation of canonical signaling modules including MAPK, NFκB, PI3K/AKT modules, pathway analysis of the time-dependent phosphorylation dynamics revealed enrichment of several cellular processes, including leukocyte adhesion, response to reactive oxygen species, cell cycle checkpoints, DNA damage and repair pathways. The detailed quantitative phosphoproteomic map of IL-33 signaling will serve as a potentially useful resource to study its function in the context of inflammatory and pathological conditions.


Assuntos
Cromatografia Líquida/métodos , Interleucina-33/metabolismo , Espectrometria de Massas/métodos , Monócitos/metabolismo , Proteômica/métodos , Humanos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA