Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(4): 100221, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35227894

RESUMO

Muscle-specific receptor tyrosine kinase (MuSK) agonist antibodies were developed 2 decades ago to explore the benefits of receptor activation at the neuromuscular junction. Unlike agrin, the endogenous agonist of MuSK, agonist antibodies function independently of its coreceptor low-density lipoprotein receptor-related protein 4 to delay the onset of muscle denervation in mouse models of ALS. Here, we performed dose-response and time-course experiments on myotubes to systematically compare site-specific phosphorylation downstream of each agonist. Remarkably, both agonists elicited similar intracellular responses at known and newly identified MuSK signaling components. Among these was inducible tyrosine phosphorylation of multiple Rab GTPases that was blocked by MuSK inhibition. Importantly, mutation of this site in Rab10 disrupts association with its effector proteins, molecule interacting with CasL 1/3. Together, these data provide in-depth characterization of MuSK signaling, describe two novel MuSK inhibitors, and expose phosphorylation of Rab GTPases downstream of receptor tyrosine kinase activation in myotubes.


Assuntos
Receptores Proteína Tirosina Quinases , Proteínas rab de Ligação ao GTP , Agrina/genética , Agrina/metabolismo , Animais , Camundongos , Fosforilação , Receptores Proteína Tirosina Quinases/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
2.
Eur Respir J ; 61(4)2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36585256

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease characterised by aberrant fibroblast/myofibroblast accumulation and excessive collagen matrix deposition in the alveolar areas of lungs. As the first approved IPF medication, pirfenidone (PFD) significantly decelerates lung function decline while its underlying anti-fibrotic mechanism remains elusive. METHODS: We performed transcriptomic and immunofluorescence analyses of primary human IPF tissues. RESULTS: We showed that myocardin-related transcription factor (MRTF) signalling is activated in myofibroblasts accumulated in IPF lungs. Furthermore, we showed that PFD inhibits MRTF activation in primary human lung fibroblasts at clinically achievable concentrations (half-maximal inhibitory concentration 50-150 µM, maximal inhibition >90%, maximal concentration of PFD in patients <100 µM). Mechanistically, PFD appears to exert its inhibitory effects by promoting the interaction between MRTF and actin indirectly. Finally, PFD-treated IPF lungs exhibit significantly less MRTF activation in fibroblast foci areas than naïve IPF lungs. CONCLUSIONS: Our results suggest MRTF signalling as a direct target for PFD and implicate that some of the anti-fibrotic effects of PFD may be due to MRTF inhibition in lung fibroblasts.


Assuntos
Fibrose Pulmonar Idiopática , Fatores de Transcrição , Humanos , Fibrose , Transativadores/farmacologia , Pulmão/patologia , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/patologia , Fibroblastos , Miofibroblastos
3.
Proc Natl Acad Sci U S A ; 116(31): 15463-15468, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31311868

RESUMO

Conformational selection by small molecules expands inhibitory possibilities for protein kinases. Nuclear magnetic resonance (NMR) measurements of the mitogen-activated protein (MAP) kinase ERK2 have shown that activation by dual phosphorylation induces global motions involving exchange between two states, L and R. We show that ERK inhibitors Vertex-11e and SCH772984 exploit the small energetic difference between L and R to shift the equilibrium in opposing directions. An X-ray structure of active 2P-ERK2 complexed with AMP-PNP reveals a shift in the Gly-rich loop along with domain closure to position the nucleotide in a more catalytically productive conformation relative to inactive 0P-ERK2:ATP. X-ray structures of 2P-ERK2 complexed with Vertex-11e or GDC-0994 recapitulate this closure, which is blocked in a complex with a SCH772984 analog. Thus, the L→R shift in 2P-ERK2 is associated with movements needed to form a competent active site. Solution measurements by hydrogen-exchange mass spectrometry (HX-MS) reveal distinct binding interactions for Vertex-11e, GDC-0994, and AMP-PNP with active vs. inactive ERK2, where the extent of HX protection correlates with R state formation. Furthermore, Vertex-11e and SCH772984 show opposite effects on HX near the activation loop. Consequently, these inhibitors differentially affect MAP kinase phosphatase activity toward 2P-ERK2. We conclude that global motions in ERK2 reflect conformational changes at the active site that promote productive nucleotide binding and couple with changes at the activation loop to allow control of dephosphorylation by conformationally selective inhibitors.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , MAP Quinases Reguladas por Sinal Extracelular/química , Inibidores de Proteínas Quinases/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Espectrometria de Massas , Modelos Biológicos , Nucleotídeos/química , Nucleotídeos/metabolismo , Fosforilação/efeitos dos fármacos , Estrutura Secundária de Proteína
4.
Bioorg Med Chem Lett ; 29(4): 674-680, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30522953

RESUMO

The discovery of disease-modifying therapies for Parkinson's Disease (PD) represents a critical need in neurodegenerative medicine. Genetic mutations in LRRK2 are risk factors for the development of PD, and some of these mutations have been linked to increased LRRK2 kinase activity and neuronal toxicity in cellular and animal models. As such, research towards brain-permeable kinase inhibitors of LRRK2 has received much attention. In the course of a program to identify structurally diverse inhibitors of LRRK2 kinase activity, a 5-azaindazole series was optimized for potency, metabolic stability and brain penetration. A key design element involved the incorporation of an intramolecular hydrogen bond to increase permeability and potency against LRRK2. This communication will outline the structure-activity relationships of this matched pair series including the challenge of obtaining a desirable balance between metabolic stability and brain penetration.


Assuntos
Indazóis/química , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Descoberta de Drogas , Ligação de Hidrogênio
5.
Bioorg Med Chem Lett ; 29(16): 2294-2301, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31307887

RESUMO

CDK4 and CDK6 are kinases with similar sequences that regulate cell cycle progression and are validated targets in the treatment of cancer. Glioblastoma is characterized by a high frequency of CDKN2A/CCND2/CDK4/CDK6 pathway dysregulation, making dual inhibition of CDK4 and CDK6 an attractive therapeutic approach for this disease. Abemaciclib, ribociclib, and palbociclib are approved CDK4/6 inhibitors for the treatment of HR+/HER2- breast cancer, but these drugs are not expected to show strong activity in brain tumors due to poor blood brain barrier penetration. Herein, we report the identification of a brain-penetrant CDK4/6 inhibitor derived from a literature molecule with low molecular weight and topological polar surface area (MW = 285 and TPSA = 66 Å2), but lacking the CDK2/1 selectivity profile due to the absence of a basic amine. Removal of a hydrogen bond donor via cyclization of the pyrazole allowed for the introduction of basic and semi-basic amines, while maintaining in many cases efflux ratios reasonable for a CNS program. Ultimately, a basic spiroazetidine (cpKa = 8.8) was identified that afforded acceptable selectivity over anti-target CDK1 while maintaining brain-penetration in vivo (mouse Kp,uu = 0.20-0.59). To probe the potency and selectivity, our lead compound was evaluated in a panel of glioblastoma cell lines. Potency comparable to abemaciclib was observed in Rb-wild type lines U87MG, DBTRG-05MG, A172, and T98G, while Rb-deficient cell lines SF539 and M059J exhibited a lack of sensitivity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Desenho de Fármacos , Glioblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Células MCF-7 , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Relação Estrutura-Atividade
6.
Nature ; 487(7408): 505-9, 2012 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-22763448

RESUMO

Mutationally activated kinases define a clinically validated class of targets for cancer drug therapy. However, the efficacy of kinase inhibitors in patients whose tumours harbour such alleles is invariably limited by innate or acquired drug resistance. The identification of resistance mechanisms has revealed a recurrent theme­the engagement of survival signals redundant to those transduced by the targeted kinase. Cancer cells typically express multiple receptor tyrosine kinases (RTKs) that mediate signals that converge on common critical downstream cell-survival effectors­most notably, phosphatidylinositol-3-OH kinase (PI(3)K) and mitogen-activated protein kinase (MAPK). Consequently, an increase in RTK-ligand levels, through autocrine tumour-cell production, paracrine contribution from tumour stroma or systemic production, could confer resistance to inhibitors of an oncogenic kinase with a similar signalling output. Here, using a panel of kinase-'addicted' human cancer cell lines, we found that most cells can be rescued from drug sensitivity by simply exposing them to one or more RTK ligands. Among the findings with clinical implications was the observation that hepatocyte growth factor (HGF) confers resistance to the BRAF inhibitor PLX4032 (vemurafenib) in BRAF-mutant melanoma cells. These observations highlight the extensive redundancy of RTK-transduced signalling in cancer cells and the potentially broad role of widely expressed RTK ligands in innate and acquired resistance to drugs targeting oncogenic kinases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fator de Crescimento de Hepatócito/metabolismo , Indóis/farmacologia , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/farmacologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Lapatinib , Ligantes , Melanoma/enzimologia , Melanoma/genética , Melanoma/patologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas B-raf/genética , Quinazolinas/farmacologia , Receptores Proteína Tirosina Quinases/metabolismo , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Vemurafenib
7.
Proc Natl Acad Sci U S A ; 112(32): E4410-7, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216984

RESUMO

Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼ 200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors.


Assuntos
Adenocarcinoma/classificação , Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/classificação , Carcinoma Ductal Pancreático/metabolismo , Metaboloma , Metabolômica , Adenocarcinoma/genética , Adenocarcinoma/patologia , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/genética , Humanos , Concentração Inibidora 50 , Lipogênese/genética , Mesoderma/metabolismo , Mesoderma/patologia , Metaboloma/genética , Reprodutibilidade dos Testes , Transcrição Gênica
8.
Proteomics ; 16(14): 1998-2004, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27273156

RESUMO

The RAS-RAF-MEK-ERK (MAPK) pathway is prevalently perturbed in cancer. Recent large-scale sequencing initiatives profiled thousands of tumors providing insight into alterations at the DNA and RNA levels. These efforts confirmed that key nodes of the MAPK pathway, in particular KRAS and BRAF, are among the most frequently altered proteins in cancer. The establishment of targeted therapies, however, has proven difficult. To decipher the underlying challenges, it is essential to decrypt the phosphorylation network spanned by the MAPK core axis. Using mass spectrometry we identified 2241 phosphorylation sites on 1020 proteins, and measured their responses to inhibition of MEK or ERK. Multiple phosphorylation patterns revealed previously undetected feedback, as upstream signaling nodes, including receptor kinases, showed changes at the phosphorylation level. We provide a dataset rich in potential therapeutic targets downstream of the MAPK cascade. By integrating TCGA (The Cancer Genome Atlas) data, we highlight some downstream phosphoproteins that are frequently altered in cancer. All MS data have been deposited in the ProteomeXchange with identifier PXD003908 (http://proteomecentral.proteomexchange.org/dataset/PXD003908).


Assuntos
Neoplasias do Colo/genética , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteínas de Neoplasias/genética , Fosfoproteínas/genética , Sequência de Aminoácidos , Antineoplásicos/farmacologia , Atlas como Assunto , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Perfilação da Expressão Gênica , Células HCT116 , Humanos , Internet , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteômica/métodos , Software
9.
Bioorg Med Chem Lett ; 25(21): 4728-4732, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26338362

RESUMO

A fragment-based lead discovery approach was used to discover novel ERK2 inhibitors. The crystal structure of N-benzyl-9H-purin-6-amine 1 in complex with ERK2 elucidated its hinge-binding mode. In addition, the simultaneous binding of an imidazole molecule adjacent to 1 suggested a direction for fragment expansion. Structure-based core hopping applied to 1 led to 5H-pyrrolo[3,2-b]pyrazine (3) that afforded direct vectors to probe the pockets of interest while retaining the essential hinge binding elements. Utilizing the new vectors for SAR exploration, the new core 3 was quickly optimized to compound 39 resulting in a greater than 6600-fold improvement in potency.


Assuntos
Descoberta de Drogas , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Pirazinas/farmacologia , Pirróis/farmacologia , Relação Dose-Resposta a Droga , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Modelos Moleculares , Estrutura Molecular , Pirazinas/síntese química , Pirazinas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem Lett ; 25(22): 5258-64, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26459208

RESUMO

Pim kinase inhibitors are promising cancer therapeutics. Pim-2, among the three Pim isoforms, plays a critical role in multiple myeloma yet inhibition of Pim-2 is challenging due to its high affinity for ATP. A co-crystal structure of a screening hit 1 bound to Pim-1 kinase revealed the key binding interactions of its indazole core within the ATP binding site. Screening of analogous core fragments afforded 1H-pyrazolo[3,4-c]pyridine (6-azaindazole) as a core for the development of pan-Pim inhibitors. Fragment and structure based drug design led to identification of the series with picomolar biochemical potency against all three Pim isoforms. Desirable cellular potency was also achieved.


Assuntos
Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/farmacologia , Piridinas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Cristalografia por Raios X , Humanos , Indazóis/síntese química , Indazóis/química , Indazóis/farmacologia , Camundongos , Modelos Moleculares , Proteínas Proto-Oncogênicas c-pim-1/química , Pirazóis/síntese química , Pirazóis/química , Piridinas/síntese química , Piridinas/química , Relação Estrutura-Atividade
11.
Bioorg Med Chem Lett ; 24(12): 2635-9, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24813737
12.
Elife ; 122024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38537148

RESUMO

Activation of the extracellular signal-regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named 'L' and 'R,' where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here, we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.


Assuntos
Trifosfato de Adenosina , Domínio Catalítico , Fosforilação , Conformação Proteica
13.
Bioorg Med Chem Lett ; 23(11): 3149-53, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23623490

RESUMO

Pim kinases are promising targets for the development of cancer therapeutics. Among the three Pim isoforms, Pim-2 is particularly important in multiple myeloma, yet is the most difficult to inhibit due to its high affinity for ATP. We identified compound 1 via high throughput screening. Using property-based drug design and co-crystal structures with Pim-1 kinase to guide analog design, we were able to improve potency against all three Pim isoforms including a significant 10,000-fold gain against Pim-2. Compound 17 is a novel lead with low picomolar potency on all three Pim kinase isoforms.


Assuntos
Desenho de Fármacos , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-pim-1/antagonistas & inibidores , Pirazóis/química , Pirimidinas/química , Animais , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Avaliação Pré-Clínica de Medicamentos , Humanos , Cinética , Camundongos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Pirazóis/síntese química , Pirazóis/farmacologia , Pirimidinas/síntese química , Pirimidinas/farmacologia , Relação Estrutura-Atividade
14.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37745518

RESUMO

Activation of the extracellular signal regulated kinase-2 (ERK2) by phosphorylation has been shown to involve changes in protein dynamics, as determined by hydrogen-deuterium exchange mass spectrometry (HDX-MS) and NMR relaxation dispersion measurements. These can be described by a global exchange between two conformational states of the active kinase, named "L" and "R", where R is associated with a catalytically productive ATP-binding mode. An ATP-competitive ERK1/2 inhibitor, Vertex-11e, has properties of conformation selection for the R-state, revealing movements of the activation loop that are allosterically coupled to the kinase active site. However, the features of inhibitors important for R-state selection are unknown. Here we survey a panel of ATP-competitive ERK inhibitors using HDX-MS and NMR and identify 14 new molecules with properties of R-state selection. They reveal effects propagated to distal regions in the P+1 and helix αF segments surrounding the activation loop, as well as helix αL16. Crystal structures of inhibitor complexes with ERK2 reveal systematic shifts in the Gly loop and helix αC, mediated by a Tyr-Tyr ring stacking interaction and the conserved Lys-Glu salt bridge. The findings suggest a model for the R-state involving small movements in the N-lobe that promote compactness within the kinase active site and alter mobility surrounding the activation loop. Such properties of conformation selection might be exploited to modulate the protein docking interface used by ERK substrates and effectors.

15.
ACS Med Chem Lett ; 14(9): 1179-1187, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37736184

RESUMO

Cyclin-dependent kinases (CDKs) are key regulators of the cell cycle and are frequently altered in cancer cells, thereby leading to uncontrolled proliferation. In this context, CDK2 has emerged as an appealing target for anticancer drug development. Herein, we describe the discovery of a series of selective small molecule inhibitors of CDK2 beginning with historical compounds from our ERK2 program (e.g., compound 6). Structure-based drug design led to the potent and selective tool compound 32, where excellent selectivity against ERK2 and CDK4 was achieved by filling the lipophilic DFG-1 pocket and targeting interactions with CDK2-specific lower hinge binding residues, respectively. Compound 32 demonstrated 112% tumor growth inhibition in mice bearing OVCAR3 tumors with 50 mg/kg bis in die (BID) oral dosing.

16.
J Med Chem ; 65(17): 11500-11512, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34779204

RESUMO

VPS34 is a class III phosphoinositide 3-kinase involved in endosomal trafficking and autophagosome formation. Inhibitors of VPS34 were believed to have value as anticancer agents, but genetic and pharmacological data suggest that sustained inhibition of VPS34 kinase activity may not be well tolerated. Here we disclose the identification of a novel series of dihydropyrazolopyrazinone compounds represented by compound 5 as potent, selective, and orally bioavailable VPS34 inhibitors through a structure-based design strategy. A water-interacting hydrogen bond acceptor within an appropriate distance to a hinge-binding element was found to afford significant VPS34 potency across chemical scaffolds. The selectivity of compound 5 over PIK family kinases arises from interactions between the hinge-binding element and the pseudo-gatekeeper residue Met682. As recent in vivo pharmacology data suggests that sustained inhibition of VPS34 kinase activity may not be tolerated, structure-activity relationships leading to VPS34 inhibition may be helpful for avoiding this target in other ATP-competitive kinase programs.


Assuntos
Antineoplásicos , Classe III de Fosfatidilinositol 3-Quinases , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Autofagia , Endossomos , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação
17.
ACS Med Chem Lett ; 13(1): 84-91, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35059127

RESUMO

Hematopoietic progenitor kinase 1 (HPK1) is implicated as a negative regulator of T-cell receptor-induced T-cell activation. Studies using HPK1 kinase-dead knock-in animals have demonstrated the loss of HPK1 kinase activity resulted in an increase in T-cell function and tumor growth inhibition in glioma models. Herein, we describe the discovery of a series of small molecule inhibitors of HPK1. Using a structure-based drug design approach, the kinase selectivity of the molecules was significantly improved by inducing and stabilizing an unusual P-loop folded binding mode. The metabolic liabilities of the initial 7-azaindole high-throughput screening hit were mitigated by addressing a key metabolic soft spot along with physicochemical property-based optimization. The resulting spiro-azaindoline HPK1 inhibitors demonstrated improved in vitro ADME properties and the ability to induce cytokine production in primary human T-cells.

18.
ACS Med Chem Lett ; 12(5): 791-797, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34055227

RESUMO

Structure-based optimization of a set of aryl urea RAF inhibitors has led to the identification of Type II pan-RAF inhibitor GNE-9815 (7), which features a unique pyrido[2,3-d]pyridazin-8(7H)-one hinge-binding motif. With minimal polar hinge contacts, the pyridopyridazinone hinge binder moiety affords exquisite kinase selectivity in a lipophilic efficient manner. The improved physicochemical properties of GNE-9815 provided a path for oral dosing without enabling formulations. In vivo evaluation of GNE-9815 in combination with the MEK inhibitor cobimetinib demonstrated synergistic MAPK pathway modulation in an HCT116 xenograft mouse model. To the best of our knowledge, GNE-9815 is among the most highly kinase-selective RAF inhibitors reported to date.

19.
J Med Chem ; 64(7): 3940-3955, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33780623

RESUMO

Optimization of a series of aryl urea RAF inhibitors led to the identification of type II pan-RAF inhibitor GNE-0749 (7), which features a fluoroquinazolinone hinge-binding motif. By minimizing reliance on common polar hinge contacts, this hinge binder allows for a greater contribution of RAF-specific residue interactions, resulting in exquisite kinase selectivity. Strategic substitution of fluorine at the C5 position efficiently masked the adjacent polar NH functionality and increased solubility by impeding a solid-state conformation associated with stronger crystal packing of the molecule. The resulting improvements in permeability and solubility enabled oral dosing of 7. In vivo evaluation of 7 in combination with the MEK inhibitor cobimetinib demonstrated synergistic pathway inhibition and significant tumor growth inhibition in a KRAS mutant xenograft mouse model.


Assuntos
Neoplasias/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Quinazolinonas/uso terapêutico , Quinases raf/antagonistas & inibidores , Animais , Azetidinas/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cães , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos Nus , Estrutura Molecular , Mutação , Compostos de Fenilureia/química , Compostos de Fenilureia/metabolismo , Piperidinas/uso terapêutico , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Quinazolinonas/química , Quinazolinonas/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases raf/genética , Quinases raf/metabolismo
20.
Structure ; 27(1): 125-133.e4, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30503777

RESUMO

Enhancement of antigen-specific T cell immunity has shown significant therapeutic benefit in infectious diseases and cancer. Hematopoietic progenitor kinase-1 (HPK1) is a negative-feedback regulator of T cell receptor signaling, which dampens T cell proliferation and effector function. A recent report showed that a catalytic dead mutant of HPK1 phenocopies augmented T cell responses observed in HPK1-knockout mice, indicating that kinase activity is critical for function. We evaluated active and inactive mutants and determined crystal structures of HPK1 kinase domain (HPK1-KD) in apo and ligand bound forms. In all structures HPK1-KD displays a rare domain-swapped dimer, in which the activation segment comprises a well-conserved dimer interface. Biophysical measurements show formation of dimer in solution. The activation segment adopts an α-helical structure which exhibits distinct orientations in active and inactive states. This face-to-face configuration suggests that the domain-swapped dimer may possess alternative selectivity for certain substrates of HPK1 under relevant cellular context.


Assuntos
Domínio Catalítico , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Animais , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Células Sf9 , Spodoptera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA