Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biochem ; 122(12): 1936-1945, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34605570

RESUMO

Remodelin is a small molecule inhibitor of N-acetyltransferase 10 (NAT10), reported to reverse the effect of cancer conditions such as epithelial to mesenchymal transition, hypoxia, and drug resistance. We analysed RNA seq data of siNAT10 and found many metabolic pathways were altered, this made us perform unbiased metabolic analysis. Here we performed untargeted metabolomics in Remodelin treated cancer cells using high-performance liquid chromatography-tandem mass spectrometry. Statistical analysis revealed a total number of 138 of which 52 metabolites were significantly modified in Remodelin treated cells. Among the most significantly altered metabolites, we identified metabolites related with mitochondrial fatty acid elongation (MFAE) and mitochondrial beta-oxidation such as lauroyl-CoA, cholesterol, triglycerides, (S)-3-hydroxyhexadecanoyl-CoA, and NAD+ . Furthermore, assessment showed alteration in expression of Enoyl-CoA hydratase, short chain 1, mitochondrial (ECHS1), and Mitochondrial trans-2-enoyl-CoA reductase (MECR) genes, associated with MFAE pathway. We also found statistically significant decrease in total cholesterol and triglycerides in Remodelin treated cancer cells. Overall, our results showed that Remodelin alters mitochondrial fatty acid metabolism and lipid accumulation in cancer cells. Finally, we validated these results in NAT10 knockdown cancer cells and found that NAT10 reduction results in alteration in gene expression associated with mitochondrial fatty acid metabolism, clearly suggesting the possible role of NAT10 in maintaining mitochondrial fatty acid metabolism.


Assuntos
Hidrazonas/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Mitocôndrias/metabolismo , Acetiltransferases N-Terminal/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/metabolismo , Tiazóis/farmacologia , Células HCT116 , Humanos , Células MCF-7 , Acetiltransferases N-Terminal/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico
2.
Clin Transl Med ; 12(9): e1045, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36149760

RESUMO

BACKGROUND: N-4 cytidine acetylation (ac4C) is an epitranscriptomics modification catalyzed by N-acetyltransferase 10 (NAT10); important for cellular mRNA stability, rRNA biogenesis, cell proliferation and epithelial to mesenchymal transition (EMT). However, whether other crucial pathways are regulated by NAT10-dependent ac4C modification in cancer cells remains unclear. Therefore, in this study, we explored the impact of NAT10 depletion in cancer cells using unbiased RNA-seq. METHODS: High-throughput sequencing of knockdown NAT10 in cancer cells was conducted to identify enriched pathways. Acetylated RNA immunoprecipitation-seq (acRIP-seq) and RIP-PCR were used to map and determine ac4C levels of RNA. Exogenous palmitate uptake assay was conducted to assess NAT10 knockdown cancer cells using Oil Red O staining and lipid content analysis. Gas-chromatography-tandem mass spectroscopy (GC/MS) was used to perform untargeted lipidomics. RESULTS: High-throughput sequencing of NAT10 knockdown in cancer cells revealed fatty acid (FA) metabolism as the top enriched pathway through the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis in differentially downregulated genes. FA metabolic genes such as ELOLV6, ACSL1, ACSL3, ACSL4, ACADSB and ACAT1 were shown to be stabilised via NAT10-dependent ac4C RNA acetylation. Additionally, NAT10 depletion was shown to significantly reduce the levels of overall lipid content, triglycerides and total cholesterol. Further, NAT10 depletion in palmitate-loaded cancer cells showed decrease in ac4C levels across the RNA transcripts of FA metabolic genes. In untargeted lipidomics, 496 out of 2 279 lipids were statistically significant in NAT10 depleted cancer cells, of which pathways associated with FA metabolism are the most enriched. CONCLUSIONS: Conclusively, our results provide novel insights into the impact of NAT10-mediated ac4C modification as a crucial regulatory factor during FA metabolism and showed the benefit of targeting NAT10 for cancer treatment.


Assuntos
Citidina , Neoplasias , Acetiltransferases , Colesterol , Citidina/análise , Citidina/genética , Citidina/metabolismo , Transição Epitelial-Mesenquimal , Ácidos Graxos/genética , Neoplasias/genética , Palmitatos , RNA/química , Transferases , Triglicerídeos
3.
Front Cell Infect Microbiol ; 11: 643312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718288

RESUMO

Although belong to the same genus, Aspergillus fumigatus is primarily involved in invasive pulmonary infection, whereas Aspergillus flavus is a common cause of superficial infection. In this study, we compared conidia (the infective propagules) of these two Aspergillus species. In immunocompetent mice, intranasal inoculation with conidia of A. flavus resulted in significantly higher inflammatory responses in the lungs compared to mice inoculated with A. fumigatus conidia. In vitro assays revealed that the dormant conidia of A. flavus, unlike A. fumigatus dormant conidia, are immunostimulatory. The conidial surface of A. fumigatus was covered by a rodlet-layer, while that of A. flavus were presented with exposed polysaccharides. A. flavus harbored significantly higher number of proteins in its conidial cell wall compared to A. fumigatus conidia. Notably, ß-1,3-glucan in the A. flavus conidial cell-wall showed significantly higher percentage of branching compared to that of A. fumigatus. The polysaccharides ensemble of A. flavus conidial cell wall stimulated the secretion of proinflammatory cytokines, and conidial cell wall associated proteins specifically stimulated IL-8 secretion from the host immune cells. Furthermore, the two species exhibited different sensitivities to antifungal drugs targeting cell wall polysaccharides, proposing the efficacy of species-specific treatment strategies. Overall, the species-specific organization of the conidial cell wall could be important in establishing infection by the two Aspergillus species.


Assuntos
Aspergillus fumigatus , Aspergillus , Animais , Aspergillus flavus , Parede Celular , Camundongos , Esporos Fúngicos
4.
Nutrients ; 12(6)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560283

RESUMO

Thymoquinone (TQ), a naturally occurring anticancer compound extracted from Nigella sativa oil, has been extensively reported to possess potent anti-cancer properties. Experimental studies showed the anti-proliferative, pro-apoptotic, and anti-metastatic effects of TQ on different cancer cells. One of the possible mechanisms underlying these effects includes alteration in key metabolic pathways that are critical for cancer cell survival. However, an extensive landscape of the metabolites altered by TQ in cancer cells remains elusive. Here, we performed an untargeted metabolomics study using leukemic cancer cell lines during treatment with TQ and found alteration in approximately 335 metabolites. Pathway analysis showed alteration in key metabolic pathways like TCA cycle, amino acid metabolism, sphingolipid metabolism and nucleotide metabolism, which are critical for leukemic cell survival and death. We found a dramatic increase in metabolites like thymine glycol in TQ-treated cancer cells, a metabolite known to induce DNA damage and apoptosis. Similarly, we observed a sharp decline in cellular guanine levels, important for leukemic cancer cell survival. Overall, we provided an extensive metabolic landscape of leukemic cancer cells and identified the key metabolites and pathways altered, which could be critical and responsible for the anti-proliferative function of TQ.


Assuntos
Benzoquinonas/farmacologia , Leucemia/tratamento farmacológico , Redes e Vias Metabólicas/efeitos dos fármacos , Metabolômica/métodos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA