Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(33): 18215-18220, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37552830

RESUMO

The distributions of heteroatoms within zeolite frameworks have important influences on the locations of exchangeable cations, which account for the diverse adsorption and reaction properties of zeolite catalysts. In particular for aluminosilicate zeolites, paired configurations of aluminum atoms separated by one or two tetrahedrally coordinated silicon atoms are important for charge-balancing pairs of H+ cations, which are active for methanol dehydration, or divalent metal cations, such as Cu2+, which selectively catalyze the reduction of NOx, both technologically important reactions. Such paired heteroatom configurations, however, are challenging to detect and probe, due to the typically nonstoichiometric compositions and nonperiodic distributions of aluminum atoms within aluminosilicate zeolite frameworks. Nevertheless, distinct configurations of paired framework aluminum atoms are unambiguously detected and resolved in solid-state 2D 27Al-29Si and 29Si-29Si NMR spectra, which are sensitive to the local environments of covalently bonded 27Al-O-29Si and 29Si-O-29Si moieties, respectively. Specifically, two H+-chabazite zeolites with the same bulk framework aluminum contents are shown to have different types and populations of closely paired aluminum species, which correlate with higher activity for methanol dehydration. The methodologies and insights are expected to be broadly applicable to analyses of heteroatom sites, their distributions, and adsorption and reaction properties in other zeolite framework types.

2.
Angew Chem Int Ed Engl ; 61(16): e202117742, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35138688

RESUMO

Tailoring processes of nucleation and growth to achieve desired material properties is a pervasive challenge in synthetic crystallization. In systems where crystals form via nonclassical pathways, engineering materials often requires the controlled assembly and structural evolution of colloidal precursors. In this study, we examine zeolite SSZ-13 crystallization and show that several polyquaternary amines function as efficient accelerants of nucleation, and, in selected cases, tune crystal size by orders of magnitude. Among the additives tested, polydiallyldimethylammonium (PDDA) was found to have the most pronounced impact on the kinetics of SSZ-13 formation, leading to a 4-fold reduction in crystallization time. Our findings also reveal that enhanced nucleation occurs at an optimal PDDA concentration where a combination of light-scattering techniques demonstrate these conditions lead to polymer-induced aggregation of amorphous precursors and the promotion of (alumino)silicate precipitation from the growth solution. Here, we show that relatively low concentrations of polymer additives can be used in unique ways to dramatically enhance SSZ-13 crystallization rates, thereby improving the overall efficiency of zeolite synthesis.

3.
J Am Chem Soc ; 142(10): 4807-4819, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32053365

RESUMO

We combine experiment and theory to investigate the cooperation or competition between organic and inorganic structure-directing agents (SDAs) for occupancy within microporous voids of chabazite (CHA) zeolites and to rationalize the effects of SDA siting on biasing the framework Al arrangement (Al-O(-Si-O)x-Al, x = 1-3) among CHA zeolites of essentially fixed composition (Si/Al = 15). CHA zeolites crystallized using mixtures of TMAda+ and Na+ contain one TMAda+ occluded per cage and Na+ co-occluded in an amount linearly proportional to the number of 6-MR paired Al sites, quantified by Co2+ titration. In contrast, CHA zeolites crystallized using mixtures of TMAda+ and K+ provide evidence that three K+ cations, on average, displace one TMAda+ from occupying a cage and contain predominantly 6-MR isolated Al sites. Moreover, CHA crystallizes from synthesis media containing more than 10-fold higher inorganic-to-organic ratios with K+ than with Na+ before competing crystalline phases form, providing a route to decrease the amount of organic SDA needed to crystallize high-silica CHA. Density functional theory calculations show that differences in the ionic radii of Na+ and K+ determine their preferences for siting in different CHA rings, which influences their energy to co-occlude with TMAda+ and stabilize different Al configurations. Monte Carlo models confirm that energy differences resulting from Na+ or K+ co-occlusion promote the formation of 6-MR and 8-MR paired Al arrangements, respectively. These results highlight opportunities to exploit using mixtures of organic and inorganic SDAs during zeolite crystallization in order to more efficiently use organic SDAs and influence framework Al arrangements.

4.
J Magn Reson ; 267: 9-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27055207

RESUMO

Transition metal-containing zeolites, particularly those with smaller pore size, have found extensive application in the selective catalytic reduction (SCR) of environmental pollutants containing nitrogen oxides. We report these zeolites have dramatically faster silicon-29 (Si-29) spin lattice relaxation times (T1) compared to their sodium-containing counterparts. Paramagnetic doping allows one to acquire Si-29 MAS spectra in the order of tens of seconds without significantly affecting the spectral resolution. Moreover, relaxation times depend on the method of preparation and the next-nearest neighbor silicon Qn(mAl) sites, where n=4 and m=0-4, respectively. A clear trend is noted between the effectiveness of Cu exchange and the Si-29 NMR relaxation times. It is anticipated that the availability of this tool, and the enhanced understanding of the nature of the active sites, will provide the means for designing improved SCR catalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA