Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(1): 117-132.e21, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30197082

RESUMO

The metabolic state of a cell is influenced by cell-extrinsic factors, including nutrient availability and growth factor signaling. Here, we present extracellular matrix (ECM) remodeling as another fundamental node of cell-extrinsic metabolic regulation. Unbiased analysis of glycolytic drivers identified the hyaluronan-mediated motility receptor as being among the most highly correlated with glycolysis in cancer. Confirming a mechanistic link between the ECM component hyaluronan and metabolism, treatment of cells and xenografts with hyaluronidase triggers a robust increase in glycolysis. This is largely achieved through rapid receptor tyrosine kinase-mediated induction of the mRNA decay factor ZFP36, which targets TXNIP transcripts for degradation. Because TXNIP promotes internalization of the glucose transporter GLUT1, its acute decline enriches GLUT1 at the plasma membrane. Functionally, induction of glycolysis by hyaluronidase is required for concomitant acceleration of cell migration. This interconnection between ECM remodeling and metabolism is exhibited in dynamic tissue states, including tumorigenesis and embryogenesis.


Assuntos
Proteínas de Transporte/fisiologia , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiologia , Metabolismo dos Carboidratos/fisiologia , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Glucose/metabolismo , Transportador de Glucose Tipo 1 , Glicólise/fisiologia , Humanos , Ácido Hialurônico/fisiologia , Hialuronoglucosaminidase/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Transdução de Sinais , Tristetraprolina/metabolismo , Tristetraprolina/fisiologia
2.
Nature ; 615(7953): 712-719, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36922590

RESUMO

Mitochondria are critical to the governance of metabolism and bioenergetics in cancer cells1. The mitochondria form highly organized networks, in which their outer and inner membrane structures define their bioenergetic capacity2,3. However, in vivo studies delineating the relationship between the structural organization of mitochondrial networks and their bioenergetic activity have been limited. Here we present an in vivo structural and functional analysis of mitochondrial networks and bioenergetic phenotypes in non-small cell lung cancer (NSCLC) using an integrated platform consisting of positron emission tomography imaging, respirometry and three-dimensional scanning block-face electron microscopy. The diverse bioenergetic phenotypes and metabolic dependencies we identified in NSCLC tumours align with distinct structural organization of mitochondrial networks present. Further, we discovered that mitochondrial networks are organized into distinct compartments within tumour cells. In tumours with high rates of oxidative phosphorylation (OXPHOSHI) and fatty acid oxidation, we identified peri-droplet mitochondrial networks wherein mitochondria contact and surround lipid droplets. By contrast, we discovered that in tumours with low rates of OXPHOS (OXPHOSLO), high glucose flux regulated perinuclear localization of mitochondria, structural remodelling of cristae and mitochondrial respiratory capacity. Our findings suggest that in NSCLC, mitochondrial networks are compartmentalized into distinct subpopulations that govern the bioenergetic capacity of tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Metabolismo Energético , Neoplasias Pulmonares , Mitocôndrias , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/ultraestrutura , Ácidos Graxos/metabolismo , Glucose/metabolismo , Gotículas Lipídicas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/ultraestrutura , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Fosforilação Oxidativa , Fenótipo , Tomografia por Emissão de Pósitrons
4.
Nature ; 575(7782): 380-384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666695

RESUMO

Mitochondria are essential regulators of cellular energy and metabolism, and have a crucial role in sustaining the growth and survival of cancer cells. A central function of mitochondria is the synthesis of ATP by oxidative phosphorylation, known as mitochondrial bioenergetics. Mitochondria maintain oxidative phosphorylation by creating a membrane potential gradient that is generated by the electron transport chain to drive the synthesis of ATP1. Mitochondria are essential for tumour initiation and maintaining tumour cell growth in cell culture and xenografts2,3. However, our understanding of oxidative mitochondrial metabolism in cancer is limited because most studies have been performed in vitro in cell culture models. This highlights a need for in vivo studies to better understand how oxidative metabolism supports tumour growth. Here we measure mitochondrial membrane potential in non-small-cell lung cancer in vivo using a voltage-sensitive, positron emission tomography (PET) radiotracer known as 4-[18F]fluorobenzyl-triphenylphosphonium (18F-BnTP)4. By using PET imaging of 18F-BnTP, we profile mitochondrial membrane potential in autochthonous mouse models of lung cancer, and find distinct functional mitochondrial heterogeneity within subtypes of lung tumours. The use of 18F-BnTP PET imaging enabled us to functionally profile mitochondrial membrane potential in live tumours.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/fisiopatologia , Neoplasias Pulmonares/fisiopatologia , Potencial da Membrana Mitocondrial , Células A549 , Animais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Camundongos Transgênicos , Compostos Organofosforados , Tomografia por Emissão de Pósitrons
5.
Cancer Immunol Immunother ; 70(8): 2389-2400, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33507343

RESUMO

Conditional genetically engineered mouse models (GEMMs) of non-small cell lung cancer (NSCLC) harbor common oncogenic driver mutations of the disease, but in contrast to human NSCLC these models possess low tumor mutational burden (TMB). As a result, these models often lack tumor antigens that can elicit host adaptive immune responses, which limits their utility in immunotherapy studies. Here, we establish Kras-mutant murine models of NSCLC bearing the common driver mutations associated with the disease and increased TMB, by in vitro exposure of cell lines derived from GEMMs of NSCLC [KrasG12D (K), KrasG12DTp53-/-(KP), KrasG12DTp53+/-Lkb1-/- (KPL)] to the alkylating agent N-methyl-N-nitrosourea (MNU). Increasing the TMB enhanced host anti-tumor T cell responses and improved anti-PD-1 efficacy in syngeneic models across all genetic backgrounds. However, limited anti-PD-1 efficacy was observed in the KPL cell lines with increased TMB, which possessed a distinct immunosuppressed tumor microenvironment (TME) primarily composed of granulocytic myeloid-derived suppressor cells (G-MDSCs). This KPL phenotype is consistent with findings in human KRAS-mutant NSCLC where LKB1 loss is a driver of primary resistance to PD-1 blockade. In summary, these novel Kras-mutant NSCLC murine models with known driver mutations and increased TMB have distinct TMEs and recapitulate the therapeutic vulnerabilities of human NSCLC. We anticipate that these immunogenic models will facilitate the development of innovative immunotherapies in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Linhagem Celular Tumoral , Modelos Animais de Doenças , Camundongos , Proteínas Serina-Treonina Quinases/genética , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genética
7.
Life Sci Alliance ; 7(9)2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38955468

RESUMO

In addition to mitochondrial DNA, mitochondrial double-stranded RNA (mtdsRNA) is exported from mitochondria. However, specific channels for RNA transport have not been demonstrated. Here, we begin to characterize channel candidates for mtdsRNA export from the mitochondrial matrix to the cytosol. Down-regulation of SUV3 resulted in the accumulation of mtdsRNAs in the matrix, whereas down-regulation of PNPase resulted in the export of mtdsRNAs to the cytosol. Targeting experiments show that PNPase functions in both the intermembrane space and matrix. Strand-specific sequencing of the double-stranded RNA confirms the mitochondrial origin. Inhibiting or down-regulating outer membrane proteins VDAC1/2 and BAK/BAX or inner membrane proteins PHB1/2 strongly attenuated the export of mtdsRNAs to the cytosol. The cytosolic mtdsRNAs subsequently localized to large granules containing the stress protein TIA-1 and activated the type 1 interferon stress response pathway. Abundant mtdsRNAs were detected in a subset of non-small-cell lung cancer cell lines that were glycolytic, indicating relevance in cancer biology. Thus, we propose that mtdsRNA is a new damage-associated molecular pattern that is exported from mitochondria in a regulated manner.


Assuntos
Citosol , Mitocôndrias , Proibitinas , RNA de Cadeia Dupla , RNA Mitocondrial , Humanos , Citosol/metabolismo , Mitocôndrias/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mitocondrial/metabolismo , RNA Mitocondrial/genética , Linhagem Celular Tumoral , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transporte de RNA , Exorribonucleases/metabolismo , Exorribonucleases/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Mitocondriais
8.
J Biol Chem ; 286(26): 23544-51, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21561858

RESUMO

The SNF1/AMP-activated protein kinases are central energy regulators in eukaryotes. SNF1 of Saccharomyces cerevisiae is inhibited during growth on high levels of glucose and is activated in response to glucose depletion and other stresses. Activation entails phosphorylation of Thr(210) on the activation loop of the catalytic subunit Snf1 by Snf1-activating kinases. We have used mutational analysis to identify Snf1 residues that are important for regulation. Alteration of Tyr(106) in the αC helix or Leu(198) adjacent to the Asp-Phe-Gly motif on the activation loop relieved glucose inhibition of phosphorylation, resulting in phosphorylation of Thr(210) during growth on high levels of glucose. Substitution of Arg for Gly(53), at the N terminus of the kinase domain, increased activation on both high and low glucose. Alteration of the ubiquitin-associated domain revealed a modest autoinhibitory effect. Previous studies identified alterations of the Gal83 (ß) and Snf4 (γ) subunits that relieve glucose inhibition, and we have here identified a distinct set of Gal83 residues that are required. Together, these results indicate that alterations at dispersed sites within each subunit of SNF1 cause phosphorylation of the kinase during growth on high levels of glucose. These findings suggest that the conformation of the SNF1 complex is crucial to maintenance of the inactive state during growth on high glucose and that the default state for SNF1 is one in which Thr(210) is phosphorylated and the kinase is active.


Assuntos
Glucose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Motivos de Aminoácidos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Glucose/farmacologia , Mutação de Sentido Incorreto , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Edulcorantes/metabolismo , Edulcorantes/farmacologia
9.
BMC Musculoskelet Disord ; 13: 217, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-23127247

RESUMO

BACKGROUND: Bradykinin type 2 receptor (B2BRK) genotype was reported to be associated with changes in the left-ventricular mass as a response to aerobic training, as well as in the regulation of the skeletal muscle performance in both athletes and non-athletes. However, there are no reports on the effect of B2BRK 9-bp polymorphism on the response of the skeletal muscle to strength training, and our aim was to determine the relationship between the B2BRK SNP and triceps brachii functional and morphological adaptation to programmed physical activity in young adults. METHODS: In this 6-week pretest-posttest exercise intervention study, twenty nine healthy young men (21.5 ± 2.7 y, BMI 24.2 ± 3.5 kg/m(2)) were put on a 6-week exercise protocol using an isoacceleration dynamometer (5 times a week, 5 daily sets with 10 maximal elbow extensions, 1 minute rest between sets). Triceps brachii muscle volumes were assessed by using magnetic resonance imaging before and after the strength training. Bradykinin type 2 receptor 9 base pair polymorphism was determined for all participants. RESULTS: Following the elbow extensors training, an average increase in the volume of both triceps brachii was 5.4 ± 3.4% (from 929.5 ± 146.8 cm(3) pre-training to 977.6 ± 140.9 cm(3) after training, p<0.001). Triceps brachii volume increase was significantly larger in individuals homozygous for -9 allele compared to individuals with one or two +9 alleles (-9/-9, 8.5 ± 3.8%; vs. -9/+9 and +9/+9 combined, 4.7 ± 4.5%, p < 0.05). Mean increases in endurance strength in response to training were 48.4 ± 20.2%, but the increases were not dependent on B2BRK genotype (-9/-9, 50.2 ± 19.2%; vs. -9/+9 and +9/+9 combined, 46.8 ± 20.7%, p > 0.05). CONCLUSIONS: We found that muscle morphological response to targeted training - hypertrophy - is related to polymorphisms of B2BRK. However, no significant influence of different B2BRK genotypes on functional muscle properties after strength training in young healthy non athletes was found. This finding could be relevant, not only in predicting individual muscle adaptation capacity to training or sarcopenia related to aging and inactivity, but also in determining new therapeutic strategies targeting genetic control of muscle function, especially for neuromuscular disorders that are characterized by progressive adverse changes in muscle quality, mass, strength and force production (e.g., muscular dystrophy, multiple sclerosis, Parkinson's disease).


Assuntos
Genótipo , Força Muscular/genética , Músculo Esquelético/fisiologia , Receptor B2 da Bradicinina/genética , Treinamento Resistido/métodos , Adaptação Fisiológica/genética , Cotovelo/fisiologia , Humanos , Hipertrofia/genética , Masculino , Adulto Jovem
10.
Cell Chem Biol ; 29(3): 423-435.e10, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34715056

RESUMO

Efforts to target glucose metabolism in cancer have been limited by the poor potency and specificity of existing anti-glycolytic agents and a poor understanding of the glucose dependence of cancer subtypes in vivo. Here, we present an extensively characterized series of potent, orally bioavailable inhibitors of the class I glucose transporters (GLUTs). The representative compound KL-11743 specifically blocks glucose metabolism, triggering an acute collapse in NADH pools and a striking accumulation of aspartate, indicating a dramatic shift toward oxidative phosphorylation in the mitochondria. Disrupting mitochondrial metabolism via chemical inhibition of electron transport, deletion of the malate-aspartate shuttle component GOT1, or endogenous mutations in tricarboxylic acid cycle enzymes, causes synthetic lethality with KL-11743. Patient-derived xenograft models of succinate dehydrogenase A (SDHA)-deficient cancers are specifically sensitive to KL-11743, providing direct evidence that TCA cycle-mutant tumors are vulnerable to GLUT inhibitors in vivo.


Assuntos
Ciclo do Ácido Cítrico , Neoplasias , Ácido Aspártico/metabolismo , Glucose/metabolismo , Humanos , Mitocôndrias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
11.
Sci Rep ; 12(1): 3592, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246558

RESUMO

Head and neck cancer is the sixth most common cancer in the world, with more than 300,000 deaths attributed to the disease annually. Aggressive surgical resection often with adjuvant chemoradiation is the cornerstone of treatment. However, the necessary chemoradiation treatment can result in collateral damage to adjacent vital structures causing a profound impact on quality of life. Here, we present a novel polymer of poly(lactic-co-glycolic) acid and polyvinyl alcohol that can serve as a versatile multidrug delivery platform as well as for detection on cross-sectional imaging while functioning as a fiduciary marker for postoperative radiotherapy and radiotherapeutic dosing. In a mouse xenograft model, the dual-layered polymer composed of calcium carbonate/thymoquinone was used for both polymer localization and narrow-field infusion of a natural therapeutic compound. A similar approach can be applied in the treatment of head and neck cancer patients, where immunotherapy and traditional chemotherapy can be delivered simultaneously with independent release kinetics.


Assuntos
Neoplasias de Cabeça e Pescoço , Polímeros , Animais , Quimiorradioterapia Adjuvante , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Camundongos , Polímeros/química , Qualidade de Vida
12.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33609439

RESUMO

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Asparagina/metabolismo , Mitocôndrias/metabolismo , Animais , Asparagina/farmacologia , Ácido Aspártico/deficiência , Ácido Aspártico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dieta/veterinária , Complexo de Proteínas da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Mitocôndrias/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/mortalidade , Neoplasias/patologia , Nucleotídeos/metabolismo , Taxa de Sobrevida
13.
Nat Commun ; 12(1): 1876, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767183

RESUMO

Viruses hijack host cell metabolism to acquire the building blocks required for replication. Understanding how SARS-CoV-2 alters host cell metabolism may lead to potential treatments for COVID-19. Here we profile metabolic changes conferred by SARS-CoV-2 infection in kidney epithelial cells and lung air-liquid interface (ALI) cultures, and show that SARS-CoV-2 infection increases glucose carbon entry into the TCA cycle via increased pyruvate carboxylase expression. SARS-CoV-2 also reduces oxidative glutamine metabolism while maintaining reductive carboxylation. Consistent with these changes, SARS-CoV-2 infection increases the activity of mTORC1 in cell lines and lung ALI cultures. Lastly, we show evidence of mTORC1 activation in COVID-19 patient lung tissue, and that mTORC1 inhibitors reduce viral replication in kidney epithelial cells and lung ALI cultures. Our results suggest that targeting mTORC1 may be a feasible treatment strategy for COVID-19 patients, although further studies are required to determine the mechanism of inhibition and potential efficacy in patients.


Assuntos
COVID-19/patologia , Ciclo do Ácido Cítrico/fisiologia , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Benzamidas/farmacologia , Linhagem Celular , Chlorocebus aethiops , Glucose/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Pulmão/metabolismo , Pulmão/virologia , Morfolinas/farmacologia , Naftiridinas/farmacologia , Pirimidinas/farmacologia , Piruvato Carboxilase/biossíntese , SARS-CoV-2/metabolismo , Células Vero , Replicação Viral/efeitos dos fármacos
14.
Cancer Res ; 81(12): 3295-3308, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33853830

RESUMO

LKB1 inactivating mutations are commonly observed in patients with KRAS-mutant non-small cell lung cancer (NSCLC). Although treatment of NSCLC with immune checkpoint inhibitors (ICI) has resulted in improved overall survival in a subset of patients, studies have revealed that co-occurring KRAS/LKB1 mutations drive primary resistance to ICIs in NSCLC. Effective therapeutic options that overcome ICI resistance in LKB1-mutant NSCLC are limited. Here, we report that loss of LKB1 results in increased secretion of the C-X-C motif (CXC) chemokines with an NH2-terminal Glu-Leu-Arg (ELR) motif in premalignant and cancerous cells, as well as in genetically engineered murine models (GEMM) of NSCLC. Heightened levels of ELR+ CXC chemokines in LKB1-deficient murine models of NSCLC positively correlated with increased abundance of granulocytic myeloid-derived suppressor cells (G-MDSC) locally within the tumor microenvironment and systemically in peripheral blood and spleen. Depletion of G-MDSCs with antibody or functional inhibition via all-trans-retinoic acid (ATRA) led to enhanced antitumor T-cell responses and sensitized LKB1-deficent murine tumors to PD-1 blockade. Combination therapy with anti-PD-1 and ATRA improved local and systemic T-cell proliferation and generated tumor-specific immunity. Our findings implicate ELR+ CXC chemokine-mediated enrichment of G-MDSCs as a potential mediator of immunosuppression in LKB1-deficient NSCLC and provide a rationale for using ATRA in combination with anti-PD-1 therapy in patients with LKB1-deficient NSCLC refractory to ICIs. SIGNIFICANCE: These findings show that accumulation of myeloid-derived suppressor cells in LKB1-deficient non-small cell lung cancer can be overcome via treatment with all-trans-retinoic acid, sensitizing tumors to immunotherapy.


Assuntos
Quinases Proteína-Quinases Ativadas por AMP/deficiência , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Granulócitos/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Células Supressoras Mieloides/imunologia , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cell Metab ; 2(1): 21-33, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16054096

RESUMO

AMP-activated protein kinase (AMPK) is the downstream component of a kinase cascade that plays a pivotal role in energy homeostasis. Activation of AMPK requires phosphorylation of threonine 172 (T172) within the T loop region of the catalytic alpha subunit. Recently, LKB1 was shown to activate AMPK. Here we show that AMPK is also activated by Ca(2+)/calmodulin-dependent protein kinase kinase (CaMKK). Overexpression of CaMKKbeta in mammalian cells increases AMPK activity, whereas pharmacological inhibition of CaMKK, or downregulation of CaMKKbeta using RNA interference, almost completely abolishes AMPK activation. CaMKKbeta isolated from rat brain or expressed in E. coli phosphorylates and activates AMPK in vitro. In yeast, CaMKKbeta expression rescues a mutant strain lacking the three kinases upstream of Snf1, the yeast homolog of AMPK. These results demonstrate that AMPK is regulated by at least two upstream kinases and suggest that AMPK may play a role in Ca(2+)-mediated signal transduction pathways.


Assuntos
Cálcio/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Células 3T3 , Proteínas Quinases Ativadas por AMP , Monofosfato de Adenosina/metabolismo , Animais , Benzimidazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Ativação Enzimática/efeitos dos fármacos , Fibroblastos , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Ionomicina/farmacologia , Isoenzimas/metabolismo , Isoquinolinas/farmacologia , Camundongos , Naftalimidas , Fosforilação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Ratos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sorbitol/farmacologia
16.
Biochemistry ; 49(45): 9911-21, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20863064

RESUMO

Nitrate reductases (Nars) belong to the DMSO reductase family of molybdoenzymes. The hyperthermophilic denitrifying archaeon Pyrobaculum aerophilum exhibits nitrate reductase (Nar) activity even at WO(4)(2-) concentrations that are inhibitory to bacterial Nars. In this report, we establish that the enzyme purified from cells grown with 4.5 µM WO(4)(2-) contains W as the metal cofactor but is otherwise identical to the Mo-Nar previously purified from P. aerophilum grown at low WO(4)(2-) concentrations. W is coordinated by a bis-molybdopterin guanine dinucleotide cofactor. The W-Nar has a 2-fold lower turnover number (633 s(-1)) but the same K(m) value for nitrate (56 µM) as the Mo-Nar. Quinol reduction and nitrate oxidation experiments monitored by EPR with both pure W-Nar and mixed W- and Mo-Nar preparations suggest a monodentate ligation by the conserved Asp241 for W(V), while Asp241 acts as a bidentate ligand for Mo(V). Redox titrations of the Mo-Nar revealed a midpoint potential of 88 mV for Mo(V/IV). The E(m) for W(V/IV) of the purified W-Nar was estimated to be -8 mV. This relatively small difference in midpoint potential is consistent with comparable enzyme activities of W- and Mo-Nars. Unlike bacterial Nars, the P. aerophilum Nar contains a unique membrane anchor, NarM, with a single heme of the o(P) type (E(m) = 126 mV). In contrast to bacterial Nars, the P. aerophilum Nar faces the cell's exterior and, hence, does not contribute to the proton motive force. Formate is used as a physiological electron donor. This is the first description of an active W-containing Nar demonstrating the unique ability of hyperthermophiles to adapt to their high-WO(4)(2-) environment.


Assuntos
Nitrato Redutase/metabolismo , Nitrito Redutases/metabolismo , Pyrobaculum/enzimologia , Tungstênio/farmacologia , Aclimatação , Domínio Catalítico , Espectroscopia de Ressonância de Spin Eletrônica , Meio Ambiente , Cinética , Espectrometria de Massas , Nitrato Redutase/isolamento & purificação , Nitrito Redutases/isolamento & purificação , Oxirredução , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Pyrobaculum/efeitos dos fármacos , Pyrobaculum/crescimento & desenvolvimento , Tungstênio/metabolismo
17.
Biochem Biophys Res Commun ; 397(2): 197-201, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20529674

RESUMO

AMP-activated protein kinase (AMPK) is a master metabolic regulator for controlling cellular energy homeostasis. Its homolog in yeast, SNF1, is activated in response to glucose depletion and other stresses. The catalytic (alpha) subunit of AMPK/SNF1, Snf1 in yeast, contains a protein Ser/Thr kinase domain (KD), an auto-inhibitory domain (AID), and a region that mediates interactions with the two regulatory (beta and gamma) subunits. Previous studies suggested that Snf1 contains an additional segment, a regulatory sequence (RS, corresponding to residues 392-518), which may also have an important role in regulating the activity of the enzyme. The crystal structure of the heterotrimer core of Saccharomyces cerevisiae SNF1 showed interactions between a part of the RS (residues 460-498) and the gamma subunit Snf4. Here we report biochemical and functional studies on the regulation of SNF1 by the RS. GST pulldown experiments demonstrate strong and direct interactions between residues 450-500 of the RS and the heterotrimer core, and single-site mutations in the RS-Snf4 interface can greatly reduce these interactions in vitro. On the other hand, functional studies appear to show only small effects of the RS-Snf4 interactions on the activity of SNF1 in vivo. This suggests that residues 450-500 may be constitutively associated with Snf4, and the remaining segments of the RS, as well as the AID, may be involved in regulating SNF1 activity.


Assuntos
Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/genética , Multimerização Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
18.
Cancer Cell ; 35(5): 709-711, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31085172

RESUMO

In this issue of Cancer Cell, Elgendy et al. describe the use of intermittent fasting as a strategy to reduce tumor glucose levels and sensitize otherwise resistant tumor cells to metformin. The authors demonstrate that intermittent fasting before metformin treatment sensitized tumors to metformin and significantly reduced tumor growth.


Assuntos
Hipoglicemia , Metformina , Jejum , Glicogênio Sintase Quinase 3 beta , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides
19.
Biomol Ther (Seoul) ; 26(1): 81-92, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212309

RESUMO

It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

20.
Mol Cell Oncol ; 5(3): e1297883, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30250881

RESUMO

We have recently demonstrated that targeted inhibition of epidermal growth factor receptor (EGFR) signaling and glutaminase led to metabolic crisis in EGFR mutant lung adenocarcinomas and significant tumor regression in mouse xenograft models. Combining targeted therapies that restrict the metabolic activity and growth of tumors represents a therapeutic strategy that holds promise for clinical translation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA