Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Biochem ; 125(5): e30565, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38591469

RESUMO

Mammals exhibit two distinct types of adipose depots: white adipose tissue (WAT) and brown adipose tissue (BAT). While WAT primarily functions as a site for energy storage, BAT serves as a thermogenic tissue that utilizes energy and glucose consumption to regulate core body temperature. Under specific stimuli such as exercise, cold exposure, and drug treatment, white adipocytes possess a remarkable ability to undergo transdifferentiation into brown-like cells known as beige adipocytes. This transformation process, known as the "browning of WAT," leads to the acquisition of new morphological and physiological characteristics by white adipocytes. We investigated the potential role of Irisin, a 12 kDa myokine that is secreted in mice and humans by skeletal muscle after physical activity, in inducing the browning process in mesenchymal stromal cells (MSCs). A subset of the MSCs possesses the remarkable capability to differentiate into different cell types such as adipocytes, osteocytes, and chondrocytes. Consequently, comprehending the effects of Irisin on MSC biology becomes a crucial factor in investigating antiobesity medications. In our study, the primary objective is to evaluate the impact of Irisin on various cell types engaged in distinct stages of the differentiation process, including stem cells, committed precursors, and preadipocytes. By analyzing the effects of Irisin on these specific cell populations, our aim is to gain a comprehensive understanding of its influence throughout the entire differentiation process, rather than solely concentrating on the final differentiated cells. This approach enables us to obtain insights into the broader effects of Irisin on the cellular dynamics and mechanisms involved in adipogenesis.


Assuntos
Adipogenia , Diferenciação Celular , Fibronectinas , Células-Tronco Mesenquimais , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas
2.
Artigo em Inglês | MEDLINE | ID: mdl-39115821

RESUMO

Thrombosis continues to pose a significant challenge in cardiovascular and cerebrovascular diseases, contributing to severe health complications such as myocardial infarction, acute ischemic stroke, and venous thromboembolism. Despite the wide array of anti-thrombotic drugs available, these treatments frequently carry substantial risks, notably including bleeding complications. In this paper, we comment the findings reported by Liu et al. about the anti-thrombotic potential of protopanaxatriol saponins from panax notoginseng.

3.
Int J Mol Sci ; 25(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125938

RESUMO

Insulin signaling is vital for regulating cellular metabolism, growth, and survival pathways, particularly in tissues such as adipose, skeletal muscle, liver, and brain. Its role in the heart, however, is less well-explored. The heart, requiring significant ATP to fuel its contractile machinery, relies on insulin signaling to manage myocardial substrate supply and directly affect cardiac muscle metabolism. This review investigates the insulin-heart axis, focusing on insulin's multifaceted influence on cardiac function, from metabolic regulation to the development of physiological cardiac hypertrophy. A central theme of this review is the pathophysiology of insulin resistance and its profound implications for cardiac health. We discuss the intricate molecular mechanisms by which insulin signaling modulates glucose and fatty acid metabolism in cardiomyocytes, emphasizing its pivotal role in maintaining cardiac energy homeostasis. Insulin resistance disrupts these processes, leading to significant cardiac metabolic disturbances, autonomic dysfunction, subcellular signaling abnormalities, and activation of the renin-angiotensin-aldosterone system. These factors collectively contribute to the progression of diabetic cardiomyopathy and other cardiovascular diseases. Insulin resistance is linked to hypertrophy, fibrosis, diastolic dysfunction, and systolic heart failure, exacerbating the risk of coronary artery disease and heart failure. Understanding the insulin-heart axis is crucial for developing therapeutic strategies to mitigate the cardiovascular complications associated with insulin resistance and diabetes.


Assuntos
Resistência à Insulina , Insulina , Transdução de Sinais , Humanos , Animais , Insulina/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Coração/fisiologia , Coração/fisiopatologia , Sistema Renina-Angiotensina/fisiologia
4.
Int J Mol Sci ; 25(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473961

RESUMO

Obesity, a complex disorder with rising global prevalence, is a chronic, inflammatory, and multifactorial disease and it is characterized by excessive adipose tissue accumulation and associated comorbidities. Adipose tissue (AT) is an extremely diverse organ. The composition, structure, and functionality of AT are significantly influenced by characteristics specific to everyone, in addition to the variability connected to various tissue types and its location-related heterogeneity. Recent investigation has shed light on the intricate relationship between bone marrow stem cells and obesity, revealing potential mechanisms that contribute to the development and consequences of this condition. Mesenchymal stem cells within the bone marrow, known for their multipotent differentiation capabilities, play a pivotal role in adipogenesis, the process of fat cell formation. In the context of obesity, alterations in the bone marrow microenvironment may influence the differentiation of mesenchymal stem cells towards adipocytes, impacting overall fat storage and metabolic balance. Moreover, bone marrow's role as a crucial component of the immune system adds another layer of complexity to the obesity-bone marrow interplay. This narrative review summarizes the current research findings on the connection between bone marrow stem cells and obesity, highlighting the multifaceted roles of bone marrow in adipogenesis and inflammation.


Assuntos
Adipócitos , Tecido Adiposo , Humanos , Tecido Adiposo/metabolismo , Diferenciação Celular , Adipócitos/metabolismo , Adipogenia , Obesidade/metabolismo , Inflamação/metabolismo , Células da Medula Óssea
5.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892431

RESUMO

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Assuntos
Receptores de Orexina , Orexinas , Polimorfismo de Nucleotídeo Único , Humanos , Orexinas/metabolismo , Orexinas/genética , Masculino , Feminino , Pessoa de Meia-Idade , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Adulto , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/genética , Rim Policístico Autossômico Dominante/sangue , Estudos de Casos e Controles , Idoso , Pressão Sanguínea , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/metabolismo , Doenças Renais Policísticas/sangue
6.
Curr Issues Mol Biol ; 45(8): 6651-6666, 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623239

RESUMO

Oxidative stress is a critical factor in the pathogenesis and progression of diabetes and its associated complications. The imbalance between reactive oxygen species (ROS) production and the body's antioxidant defence mechanisms leads to cellular damage and dysfunction. In diabetes, chronic hyperglycaemia and mitochondrial dysfunction contribute to increased ROS production, further exacerbating oxidative stress. This oxidative burden adversely affects various aspects of diabetes, including impaired beta-cell function and insulin resistance, leading to disrupted glucose regulation. Additionally, oxidative stress-induced damage to blood vessels and impaired endothelial function contribute to the development of diabetic vascular complications such as retinopathy, nephropathy, and cardiovascular diseases. Moreover, organs and tissues throughout the body, including the kidneys, nerves, and eyes, are vulnerable to oxidative stress, resulting in diabetic nephropathy, neuropathy, and retinopathy. Strategies to mitigate oxidative stress in diabetes include antioxidant therapy, lifestyle modifications, and effective management of hyperglycaemia. However, further research is necessary to comprehensively understand the underlying mechanisms of oxidative stress in diabetes and to evaluate the efficacy of antioxidant interventions in preventing and treating diabetic complications. By addressing oxidative stress, it might be possible to alleviate the burden of diabetes and improve patient outcomes.

7.
Int J Mol Sci ; 24(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36834515

RESUMO

The ketogenic diet (KD), a diet high in fat and protein but low in carbohydrates, is gaining much interest due to its positive effects, especially in neurodegenerative diseases. Beta-hydroxybutyrate (BHB), the major ketone body produced during the carbohydrate deprivation that occurs in KD, is assumed to have neuroprotective effects, although the molecular mechanisms responsible for these effects are still unclear. Microglial cell activation plays a key role in the development of neurodegenerative diseases, resulting in the production of several proinflammatory secondary metabolites. The following study aimed to investigate the mechanisms by which BHB determines the activation processes of BV2 microglial cells, such as polarization, cell migration and expression of pro- and anti-inflammatory cytokines, in the absence or in the presence of lipopolysaccharide (LPS) as a proinflammatory stimulus. The results showed that BHB has a neuroprotective effect in BV2 cells, inducing both microglial polarization towards an M2 anti-inflammatory phenotype and reducing migratory capacity following LPS stimulation. Furthermore, BHB significantly reduced expression levels of the proinflammatory cytokine IL-17 and increased levels of the anti-inflammatory cytokine IL-10. From this study, it can be concluded that BHB, and consequently the KD, has a fundamental role in neuroprotection and prevention in neurodegenerative diseases, presenting new therapeutic targets.


Assuntos
Dieta Cetogênica , Fármacos Neuroprotetores , Humanos , Ácido 3-Hidroxibutírico/farmacologia , Microglia/metabolismo , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Fármacos Neuroprotetores/farmacologia
8.
Molecules ; 28(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37110573

RESUMO

Microglia, the resident macrophage-like population in the central nervous system, play a crucial role in the pathogenesis of many neurodegenerative disorders by triggering an inflammatory response that leads to neuronal death. Neuroprotective compounds to treat or prevent neurodegenerative diseases are a new field of study in modern medicine. Microglia are activated in response to inflammatory stimuli. The pathogenesis of various neurodegenerative diseases is closely related to the constant activation of microglia due to their fundamental role as a mediator of inflammation in the brain environment. α-Tocopherol, also known as vitamin E, is reported to possess potent neuroprotective effects. The goal of this study was to investigate the biological effects of vitamin E on BV2 microglial cells, as a possible neuroprotective and anti-inflammatory agent, following stimulation with lipopolysaccharide (LPS). The results showed that the pre-incubation of microglia with α-tocopherol can guarantee neuroprotective effects during microglial activation induced by LPS. α-Tocopherol preserved the branched morphology typical of microglia in a physiological state. It also reduced the migratory capacity; the production of pro-inflammatory and anti-inflammatory cytokines such as TNF-α and IL-10; and the activation of receptors such as TRL4 and CD40, which modulate the PI3K-Akt signaling pathway. The results of this study require further insights and research, but they present new scenarios for the application of vitamin E as an antioxidant for the purpose of greater neuroprotection in vivo for the prevention of possible neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Lipopolissacarídeos/farmacologia , Microglia , alfa-Tocoferol/farmacologia , alfa-Tocoferol/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Vitamina E/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Doenças Neurodegenerativas/metabolismo , Óxido Nítrico/metabolismo , NF-kappa B/metabolismo
9.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293005

RESUMO

Two different types of adipose depots can be observed in mammals: white adipose tissue (WAT) and brown adipose tissue (BAT). The primary role of WAT is to deposit surplus energy in the form of triglycerides, along with many metabolic and hormonal activities; as thermogenic tissue, BAT has the distinct characteristic of using energy and glucose consumption as a strategy to maintain the core body temperature. Under specific stimuli-such as exercise, cold exposure, and drug treatment-white adipocytes can utilize their extraordinary flexibility to transdifferentiate into brown-like cells, called beige adipocytes, thereby acquiring new morphological and physiological characteristics. For this reason, the process is identified as the 'browning of WAT'. We evaluated the ability of some drugs, including GW501516, sildenafil, and rosiglitazone, to induce the browning process of adult white adipocytes obtained from differentiated mesenchymal stromal cells (MSCs). In addition, we broadened our investigation by evaluating the potential browning capacity of IRISIN, a myokine that is stimulated by muscular exercises. Our data indicate that IRISIN was effective in promoting the browning of white adipocytes, which acquire increased expression of UCP1, increased mitochondrial mass, and modification in metabolism, as suggested by an increase of mitochondrial oxygen consumption, primarily in presence of glucose as a nutrient. These promising browning agents represent an appealing focus in the therapeutic approaches to counteracting metabolic diseases and their associated obesity.


Assuntos
Adipócitos Brancos , Células-Tronco Mesenquimais , Animais , Adipócitos Brancos/metabolismo , Fibronectinas/metabolismo , Rosiglitazona/farmacologia , Citrato de Sildenafila/farmacologia , Medula Óssea/metabolismo , Metabolismo Energético , Termogênese , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Células-Tronco Mesenquimais/metabolismo , Glucose/metabolismo , Triglicerídeos/metabolismo , Mamíferos/metabolismo
10.
Pediatr Cardiol ; 42(5): 1133-1140, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33864103

RESUMO

Patients with bicuspid aortic valve (BAV) have an increased risk of aortic dilation and aortic dissection or rupture. The impact of physical training on the natural course of aortopathy in BAV patients remains unclear. The aim of this study was to evaluate the impact of regular physical activity on aortic diameters in a consecutive cohort of paediatric patients with BAV. Consecutive paediatric BAV patients were evaluated and categorized into two groups: physically active and sedentary subjects. Only the subjects with a complete 2-year follow-up were included in the study. To evaluate the potential impact of physical activity on aortic size, aortic diameters were measured at the sinus of Valsalva and mid-ascending aorta using echocardiography. We defined aortic diameter progression the increase of aortic diameter ≥ 10% from baseline. Among 90 BAV patients (11.5 ± 3.4 years of age, 77% males), 53 (59%) were physically active subjects. Compared to sedentary, physically active subjects were not significantly more likely to have > 10% increase in sinus of Valsalva (13% vs. 8%, p-value = 0.45) or mid-ascending aorta diameter (9% vs. 13%, p-value = 0.55) at 2 years follow-up, both in subjects with sinus of Valsalva diameter progression (3.7 ± 1.0 mm vs. 3.5 ± 0.8 mm, p-value = 0.67) and in those with ascending aorta diameter progression (3.0 ± 0.8 mm vs. 3.2 ± 1.3 mm, p-value = 0.83). In our paediatric cohort of BAV patients, the prevalence and the degree of aortic diameter progression was not significantly different between physically active and sedentary subjects, suggesting that aortic dilation is unrelated to regular physical activity over a 2-year period.


Assuntos
Valva Aórtica/patologia , Doença da Válvula Aórtica Bicúspide/fisiopatologia , Progressão da Doença , Exercício Físico , Adolescente , Valva Aórtica/diagnóstico por imagem , Doença da Válvula Aórtica Bicúspide/diagnóstico por imagem , Estudos de Casos e Controles , Criança , Ecocardiografia , Feminino , Humanos , Masculino , Estudos Retrospectivos
11.
Heart Fail Clin ; 17(2): 303-313, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33673954

RESUMO

We evaluated the impact of weight loss (WL) using a Mediterranean diet and mild-to-moderate-intensity aerobic exercise program, on clinical status of obese, symptomatic patients with hypertrophic cardiomyopathy (HCM). Compared with nonresponders, responders showed a significant reduction of left atrial diameter, left atrial volume index (LAVI), E/E'average, pulmonary artery systolic pressure (PASP), and a significant increase in Vo2max (%) and peak workload. Body mass index changes correlated with reduction in left atrial diameter, LAVI, E/E'average, PASP, and increase of Vo2max (mL/Kg/min), Vo2max (%), peak workload. Mediterranean diet and aerobic exercise is associated with clinical-hemodynamic improvement in obese symptomatic HCM patients.


Assuntos
Cardiomiopatia Hipertrófica/terapia , Dieta Mediterrânea , Exercício Físico/fisiologia , Obesidade/epidemiologia , Redução de Peso/fisiologia , Cardiomiopatia Hipertrófica/epidemiologia , Cardiomiopatia Hipertrófica/fisiopatologia , Comorbidade , Teste de Esforço , Humanos
12.
Int J Mol Sci ; 21(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354030

RESUMO

BACKGROUND: On the 31 December 2019, the World Health Organization (WHO) was informed of a cluster of cases of pneumonia of unknown origin detected in Wuhan City, Hubei Province, China. The infection spread first in China and then in the rest of the world, and on the 11th of March, the WHO declared that COVID-19 was a pandemic. Taking into consideration the mortality rate of COVID-19, about 5-7%, and the percentage of positive patients admitted to intensive care units being 9-11%, it should be mandatory to consider and take all necessary measures to contain the COVID-19 infection. Moreover, given the recent evidence in different hospitals suggesting IL-6 and TNF-α inhibitor drugs as a possible therapy for COVID-19, we aimed to highlight that a dietary intervention could be useful to prevent the infection and/or to ameliorate the outcomes during therapy. Considering that the COVID-19 infection can generate a mild or highly acute respiratory syndrome with a consequent release of pro-inflammatory cytokines, including IL-6 and TNF-α, a dietary regimen modification in order to improve the levels of adiponectin could be very useful both to prevent the infection and to take care of patients, improving their outcomes.


Assuntos
Antioxidantes/administração & dosagem , Betacoronavirus , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Dieta , Suplementos Nutricionais , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , Adiponectina/metabolismo , Ácido Ascórbico/administração & dosagem , COVID-19 , Infecções por Coronavirus/metabolismo , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Flavonoides/administração & dosagem , Humanos , Interleucina-6/imunologia , Interleucina-6/metabolismo , Pneumopatias/imunologia , Pneumopatias/metabolismo , Pneumopatias/terapia , Pandemias , Pneumonia Viral/metabolismo , SARS-CoV-2 , Fator de Necrose Tumoral alfa/metabolismo
13.
Medicina (Kaunas) ; 56(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255569

RESUMO

BACKGROUND AND OBJECTIVES: Coronavirus disease 2019 (COVID-19) is a highly contagious infectious disease, responsible for a global pandemic that began in January 2020. Human/COVID-19 interactions cause different outcomes ranging from minor health consequences to death. Since social interaction is the default mode by which individuals communicate with their surroundings, different modes of contagion can play a role in determining the long-term consequences for mental health and emotional well-being. We examined some basic aspects of human social interaction, emphasizing some particular features of the emotional contagion. Moreover, we analyzed the main report that described brain damage related to the COVID-19 infection. Indeed, the goal of this review is to suggest a possible explanation for the relationships among emotionally impaired people, brain damage, and COVID-19 infection. RESULTS: COVID-19 can cause several significant neurological disorders and the pandemic has been linked to a rise in people reporting mental health problems, such as depression and anxiety. Neurocognitive symptoms associated with COVID-19 include delirium, both acute and chronic attention and memory impairment related to hippocampal and cortical damage, as well as learning deficits in both adults and children. CONCLUSIONS: Although our knowledge on the biology and long-term clinical outcomes of the COVID-19 infection is largely limited, approaching the pandemic based on lessons learnt from previous outbreaks of infectious diseases and the biology of other coronaviruses will provide a suitable pathway for developing public mental health strategies, which could be positively translated into therapeutic approaches, attempting to improve stress coping responses, thus contributing to alleviate the burden driven by the pandemic.


Assuntos
Encefalopatias/virologia , COVID-19 , Saúde Mental , Angústia Psicológica , SARS-CoV-2/patogenicidade , Adaptação Psicológica , COVID-19/epidemiologia , COVID-19/fisiopatologia , COVID-19/psicologia , Humanos
16.
Neuropsychobiology ; 78(1): 7-13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30970364

RESUMO

BACKGROUND: Recent investigations have highlighted significant differences in verbal recall between patients with panic disorder (PD) and controls. These studies have highlighted that verbal memory and working memory could be impaired in PD. OBJECTIVES: The objective of the present meta-analysis is to confirm this hypothesis, reviewing the studies that have investigated neurocognitive testing in PD. METHODS: We performed a systematic literature search for studies published between 1980 and 2015 that reported cognitive measurements in PD patients and controls. Effect size estimates were computed using the restricted maximum likelihood model. Only case-control studies were selected for this meta-analysis. We included studies that made a direct comparison between PD subjects and healthy controls. The diagnostic group consisted of adult patients aged over 18 years diagnosed with PD. We excluded the studies that did not employ a case-control design. All statistical analyses were carried out on R using the "metafor" package version 1.9-8. The effect size for each study neuropsychological test was calculated using the mean and SD of performance results, and p values < 0.05 were considered significant. RESULTS: We identified few studies that tested verbal memory and executive functions in PD patients and controls, and this difference was not significant. On the other hand, there are several studies that have used the emotional Stroop task to assess cognitive functions in PD. There is no robust evidence of impairment of memory function in PD; however, when considering the emotional Stroop task, it was found that PD patients performed slower (p < 0.01) than healthy controls for all three types of stimuli (neutral, negative, positive). CONCLUSION: This meta-analysis included a small number of studies, which may have introduced bias into the analysis. However, there is some evidence of impairment of neurocognitive functions in PD when performing the emotional Stroop task. Furthermore, the paucity of studies evaluating neurocognition in PD suggests the need for further research in this field in order to draw meaningful conclusions.


Assuntos
Atenção , Emoções , Transtorno de Pânico/psicologia , Humanos , Teste de Stroop
17.
J Cell Physiol ; 233(12): 9345-9353, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29319158

RESUMO

This study was conceived to evaluate the effects of three different diets on body composition, metabolic parameters, and serum oxidative status. We enrolled three groups of healthy men (omnivores, vegetarians, and vegans) with similar age, weight and BMI, and we observed a significant decrease in muscle mass index and lean body mass in vegan compared to vegetarian and omnivore groups, and higher serum homocysteine levels in vegetarians and vegans compared to omnivores. We studied whether serum from omnivore, vegetarian, and vegan subjects affected oxidative stress, growth and differentiation of both cardiomyoblast cell line H9c2 and H-H9c2 (H9c2 treated with H2 O2 to induce oxidative damage). We demonstrated that vegan sera treatment of both H9c2 and H-H9c2 cells induced an increase of TBARS values and cell death and a decrease of free NO2- compared to vegetarian and omnivorous sera. Afterwards, we investigated the protective effects of vegan, vegetarian, and omnivore sera on the morphological changes induced by H2 O2 in H9c2 cell line. We showed that the omnivorous sera had major antioxidant and differentiation properties compared to vegetarian and vegan sera. Finally, we evaluated the influence of the three different groups of sera on MAPKs pathway and our data suggested that ERK expression increased in H-H9c2 cells treated with vegetarian and vegan sera and could promote cell death. The results obtained in this study demonstrated that restrictive vegan diet could not prevent the onset of metabolic and cardiovascular diseases nor protect by oxidative damage.


Assuntos
Diferenciação Celular , Dieta Vegana , Células Musculares/citologia , Músculos/anatomia & histologia , Adulto , Animais , Antropometria , Contagem de Células , Linhagem Celular , Forma Celular , Humanos , Sistema de Sinalização das MAP Quinases , Masculino , Células Musculares/enzimologia , Miócitos Cardíacos/patologia , Tamanho do Órgão , Oxirredução , Estresse Oxidativo , Projetos Piloto , Ratos , Vegetarianos , Adulto Jovem
19.
Eur J Pediatr ; 177(9): 1371-1375, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29353440

RESUMO

The board game Kaledo was proven to be effective in improving nutrition knowledge and in modifying dietary behavior in students attending middle and high school. The present pilot study aims to reproduce these results in younger students (7-11 years old) attending primary school. A total of 1313 children from ten schools were recruited to participate in the present study. Participants were randomized into two groups: (1) the treatment group which consisted of playing Kaledo over 20 sessions and (2) the no intervention group. Anthropometric measures were carried out for both groups at baseline (prior to any treatment) and at two follow-up post-assessments (8 and 18 months). All the participants completed a questionnaire concerning physical activity and a 1-week food diary at each assessment. The primary outcomes were (i) BMI z-score, (ii) scores on physical activity, and (iii) scores on a dietary questionnaire. BMI z-score was significantly lower in the treated group compared to the control group at 8 months. Frequency and duration of self-reported physical activity were also significantly augmented in the treated group compared to the control group at both post-assessments. Moreover, a significant increase in the consumption of healthy food and a significant decrease in junk food intake were observed in the treated group. CONCLUSION: The present results confirm the efficacy of Kaledo in younger students in primary schools, and it can be used as a useful nutritional tool for obesity prevention programs in children. What is Known: • Kaledo is a new educational board game to improve nutrition knowledge and to promote a healthy lifestyle. • In two cluster randomized trials conducted in Campania region (Italy), we showed that Kaledo could improve nutrition knowledge and dietary behavior and have a positive effect on the BMI z-score in children with age ranging from 9 to 14 years old attending school. • Kaledo may be used as an effective tool for obesity prevention programs in middle and high school students. What is New: • Investigating the effects of Kaledo on younger primary school children (7-11 year olds), Kaledo could be an effective tool in obesity prevention programs for children as young as 7 years old.


Assuntos
Exercício Físico/fisiologia , Jogos Recreativos , Promoção da Saúde/métodos , Estilo de Vida Saudável , Obesidade Infantil/prevenção & controle , Antropometria , Criança , Ingestão de Alimentos , Feminino , Comportamentos Relacionados com a Saúde/fisiologia , Humanos , Masculino , Projetos Piloto , Serviços de Saúde Escolar , Instituições Acadêmicas , Estudantes , Inquéritos e Questionários
20.
J Dairy Sci ; 101(3): 1843-1851, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29290444

RESUMO

Excessive energy intake may evoke complex biochemical processes characterized by inflammation, oxidative stress, and impairment of mitochondrial function that represent the main factors underlying noncommunicable diseases. Because cow milk is widely used for human nutrition and in food industry processing, the nutritional quality of milk is of special interest with respect to human health. In our study, we analyzed milk produced by dairy cows fed a diet characterized by a high forage:concentrate ratio (high forage milk, HFM). In view of the low n-6:n-3 ratio and high content of conjugated linoleic acid of HFM, we studied the effects of this milk on lipid metabolism, inflammation, mitochondrial function, and oxidative stress in a rat model. To this end, we supplemented for 4 wk the diet of male Wistar rats with HFM and with an isocaloric amount (82 kJ, 22 mL/d) of milk obtained from cows fed a diet with low forage:concentrate ratio, and analyzed the metabolic parameters of the animals. Our results indicate that HFM may positively affect lipid metabolism, leptin:adiponectin ratio, inflammation, mitochondrial function, and oxidative stress, providing the first evidence of the beneficial effects of HFM on rat metabolism.


Assuntos
Ração Animal , Indústria de Laticínios , Suplementos Nutricionais , Inflamação/terapia , Leite/química , Mitocôndrias/fisiologia , Estresse Oxidativo , Ração Animal/análise , Animais , Bovinos , Feminino , Inflamação/prevenção & controle , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA