Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biomater Adv ; 162: 213915, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38878646

RESUMO

One of the leading causes that complicate the treatment of some malignancies, including breast cancer, is tumor heterogeneity. In addition to inter-heterogeneity and intra-heterogeneity of tumors that reflect the differences between cancer cell characteristics, heterogeneity in the tumor microenvironment plays a critical role in tumor progression and could be considered an overlooked and a proper target for the effective selection of therapeutic approaches. Due to the difficulty of completely capturing tumor heterogeneity in conventional detection methods, Tumor-on-Chip (TOC) devices with culturing patient-derived spheroids could be an appropriate alternative. In this research, human-derived spheroids from breast cancer individuals were cultured for 6 days in microfluidic devices. To compare TOC data with conventional detection methods, immunohistochemistry (IHC) and ITRAQ data were employed, and various protein expressions were validated using the transcriptomic databases. The behavior of the spheroids in the collagen matrix and the cell viability were monitored over 6 days of culture. IHC and immunocytochemistry (ICC) results revealed that inter and intra-heterogeneity of tumor spheroids are associated with HER2/ER expression. HER2 expression levels revealed a more important biomarker associated with invasion in the 3D culturing of spheroids. The expression levels of CD163 (as a marker for Ma2 macrophages) and CD44 (a marker for cancer stem cells (CSCs)) were also evaluated. Interestingly, the levels of M2a macrophages and CSCs were higher in triple-negative specimens and samples that showed higher migration and invasion. Cell density and extracellular matrix (ECM) stiffness were also important factors affecting the migration and invasion of the spheroids through the matrix. Among these, rigid ECM revealed a more crucial role than cell density. To sum up, these research findings demonstrated that human-derived spheroids from breast cancer specimens in microfluidic devices provide a dynamic condition for predicting tumor heterogeneity in patients, which can help move the field forward for better and more accurate therapeutic strategies.


Assuntos
Neoplasias da Mama , Dispositivos Lab-On-A-Chip , Esferoides Celulares , Microambiente Tumoral , Humanos , Neoplasias da Mama/patologia , Feminino , Esferoides Celulares/patologia , Biomarcadores Tumorais/metabolismo , Sobrevivência Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA