Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Revista
Intervalo de ano de publicação
1.
Nature ; 594(7863): 365-368, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135524

RESUMO

Red supergiants are the most common final evolutionary stage of stars that have initial masses between 8 and 35 times that of the Sun1. During this stage, which lasts roughly 100,000 years1, red supergiants experience substantial mass loss. However, the mechanism for this mass loss is unknown2. Mass loss may affect the evolutionary path, collapse and future supernova light curve3 of a red supergiant, and its ultimate fate as either a neutron star or a black hole4. From November 2019 to March 2020, Betelgeuse-the second-closest red supergiant to Earth (roughly 220 parsecs, or 724 light years, away)5,6-experienced a historic dimming of its visible brightness. Usually having an apparent magnitude between 0.1 and 1.0, its visual brightness decreased to 1.614 ± 0.008 magnitudes around 7-13 February 20207-an event referred to as Betelgeuse's Great Dimming. Here we report high-angular-resolution observations showing that the southern hemisphere of Betelgeuse was ten times darker than usual in the visible spectrum during its Great Dimming. Observations and modelling support a scenario in which a dust clump formed recently in the vicinity of the star, owing to a local temperature decrease in a cool patch that appeared on the photosphere. The directly imaged brightness variations of Betelgeuse evolved on a timescale of weeks. Our findings suggest that a component of mass loss from red supergiants8 is inhomogeneous, linked to a very contrasted and rapidly changing photosphere.

2.
Nature ; 533(7602): 217-20, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27144357

RESUMO

Sunspots are cool areas caused by strong surface magnetic fields that inhibit convection. Moreover, strong magnetic fields can alter the average atmospheric structure, degrading our ability to measure stellar masses and ages. Stars that are more active than the Sun have more and stronger dark spots than does the Sun, including on the rotational pole. Doppler imaging, which has so far produced the most detailed images of surface structures on other stars, cannot always distinguish the hemisphere in which the starspots are located, especially in the equatorial region and if the data quality is not optimal. This leads to problems in investigating the north-south distribution of starspot active latitudes (those latitudes with more starspot activity); this distribution is a crucial constraint of dynamo theory. Polar spots, whose existence is inferred from Doppler tomography, could plausibly be observational artefacts. Here we report imaging of the old, magnetically active star ζ Andromedae using long-baseline infrared interferometry. In our data, a dark polar spot is seen in each of two observation epochs, whereas lower-latitude spot structures in both hemispheres do not persist between observations, revealing global starspot asymmetries. The north-south symmetry of active latitudes observed on the Sun is absent on ζ And, which hosts global spot patterns that cannot be produced by solar-type dynamos.

3.
Nature ; 515(7526): 234-6, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25363778

RESUMO

A classical nova occurs when material accreting onto the surface of a white dwarf in a close binary system ignites in a thermonuclear runaway. Complex structures observed in the ejecta at late stages could result from interactions with the companion during the common-envelope phase. Alternatively, the explosion could be intrinsically bipolar, resulting from a localized ignition on the surface of the white dwarf or as a consequence of rotational distortion. Studying the structure of novae during the earliest phases is challenging because of the high spatial resolution needed to measure their small sizes. Here we report near-infrared interferometric measurements of the angular size of Nova Delphini 2013, starting one day after the explosion and continuing with extensive time coverage during the first 43 days. Changes in the apparent expansion rate can be explained by an explosion model consisting of an optically thick core surrounded by a diffuse envelope. The optical depth of the ejected material changes as it expands. We detect an ellipticity in the light distribution, suggesting a prolate or bipolar structure that develops as early as the second day. Combining the angular expansion rate with radial velocity measurements, we derive a geometric distance to the nova of 4.54 ± 0.59 kiloparsecs from the Sun.

4.
Nature ; 409(6823): 1012-4, 2001 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-11234003

RESUMO

A star forms when a cloud of dust and gas collapses. It is generally believed that this collapse first produces a flattened rotating disk, through which matter is fed onto the embryonic star at the centre of the disk. When the temperature and density at the centre of the star pass a critical threshold, thermonuclear fusion begins. The remaining disk, which can still contain up to 0.3 times the mass of the star, is then sculpted and eventually dissipated by the radiation and wind from the newborn star. But this picture of the structure and evolution of the disk remains speculative because of the lack of morphological data of sufficient resolution and uncertainties regarding the underlying physical processes. Here we present images of a young star, LkH alpha101, in which the structure of the inner accretion disk is resolved. We find that the disk is almost face-on, with a central gap (or cavity) and a hot inner edge. The cavity is bigger than previous theoretical predictions, and we infer that the position of the inner edge is probably determined by sublimation of dust grains by direct stellar radiation, rather than by disk-reprocessing or viscous-heating processes as usually assumed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA