Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38051503

RESUMO

Twenty-four hour rhythmicity in whole-body substrate metabolism, skeletal muscle clock gene expression and mitochondrial respiration is compromised upon insulin resistance. With exercise training known to ameliorate insulin resistance, our objective was to test if exercise training can reinforce diurnal variation in whole-body and skeletal muscle metabolism in men with insulin resistance. In a single-arm longitudinal design, 10 overweight and obese men with insulin resistance performed 12 weeks of high-intensity interval training recurrently in the afternoon (between 14.00 and 18.00 h) and were tested pre- and post-exercise training, while staying in a metabolic research unit for 2 days under free-living conditions with regular meals. On the second days, indirect calorimetry was performed at 08.00, 13.00, 18.00, 23.00 and 04.00 h, muscle biopsies were taken from the vastus lateralis at 08.30, 13.30 and 23.30 h, and blood was drawn at least bi-hourly over 24 h. Participants did not lose body weight over 12 weeks, but improved body composition and exercise capacity. Exercise training resulted in reduced 24-h plasma glucose levels, but did not modify free fatty acid and triacylglycerol levels. Diurnal variation of muscle clock gene expression was modified by exercise training with period genes showing an interaction (time × exercise) effect and reduced mRNA levels at 13.00 h. Exercise training increased mitochondrial respiration without inducing diurnal variation. Twenty-four-hour substrate metabolism and energy expenditure remained unchanged. Future studies should investigate alternative exercise strategies or types of interventions (e.g. diet or drugs aiming at improving insulin sensitivity) for their capacity to reinforce diurnal variation in substrate metabolism and mitochondrial respiration. KEY POINTS: Insulin resistance is associated with blunted 24-h flexibility in whole-body substrate metabolism and skeletal muscle mitochondrial respiration, and disruptions in the skeletal muscle molecular circadian clock. We hypothesized that exercise training modifies 24-h rhythmicity in whole-body substrate metabolism and diurnal variation in skeletal muscle molecular clock and mitochondrial respiration in men with insulin resistance. We found that metabolic inflexibility over 24 h persisted after exercise training, whereas mitochondrial respiration increased independent of time of day. Gene expression of Per1-3 and Rorα in skeletal muscle changed particularly close to the time of day at which exercise training was performed. These results provide the rationale to further investigate the differential metabolic impact of differently timed exercise to treat metabolic defects of insulin resistance that manifest at a particular time of day.

2.
Diabetologia ; 65(10): 1710-1720, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35871650

RESUMO

AIMS/HYPOTHESIS: Time-restricted eating (TRE) is suggested to improve metabolic health by limiting food intake to a defined time window, thereby prolonging the overnight fast. This prolonged fast is expected to lead to a more pronounced depletion of hepatic glycogen stores overnight and might improve insulin sensitivity due to an increased need to replenish nutrient storage. Previous studies showed beneficial metabolic effects of 6-8 h TRE regimens in healthy, overweight adults under controlled conditions. However, the effects of TRE on glucose homeostasis in individuals with type 2 diabetes are unclear. Here, we extensively investigated the effects of TRE on hepatic glycogen levels and insulin sensitivity in individuals with type 2 diabetes. METHODS: Fourteen adults with type 2 diabetes (BMI 30.5±4.2 kg/m2, HbA1c 46.1±7.2 mmol/mol [6.4±0.7%]) participated in a 3 week TRE (daily food intake within 10 h) vs control (spreading food intake over ≥14 h) regimen in a randomised, crossover trial design. The study was performed at Maastricht University, the Netherlands. Eligibility criteria included diagnosis of type 2 diabetes, intermediate chronotype and absence of medical conditions that could interfere with the study execution and/or outcome. Randomisation was performed by a study-independent investigator, ensuring that an equal amount of participants started with TRE and CON. Due to the nature of the study, neither volunteers nor investigators were blinded to the study interventions. The quality of the data was checked without knowledge on intervention allocation. Hepatic glycogen levels were assessed with 13C-MRS and insulin sensitivity was assessed using a hyperinsulinaemic-euglycaemic two-step clamp. Furthermore, glucose homeostasis was assessed with 24 h continuous glucose monitoring devices. Secondary outcomes included 24 h energy expenditure and substrate oxidation, hepatic lipid content and skeletal muscle mitochondrial capacity. RESULTS: Results are depicted as mean ± SEM. Hepatic glycogen content was similar between TRE and control condition (0.15±0.01 vs 0.15±0.01 AU, p=0.88). M value was not significantly affected by TRE (19.6±1.8 vs 17.7±1.8 µmol kg-1 min-1 in TRE vs control, respectively, p=0.10). Hepatic and peripheral insulin sensitivity also remained unaffected by TRE (p=0.67 and p=0.25, respectively). Yet, insulin-induced non-oxidative glucose disposal was increased with TRE (non-oxidative glucose disposal 4.3±1.1 vs 1.5±1.7 µmol kg-1 min-1, p=0.04). TRE increased the time spent in the normoglycaemic range (15.1±0.8 vs 12.2±1.1 h per day, p=0.01), and decreased fasting glucose (7.6±0.4 vs 8.6±0.4 mmol/l, p=0.03) and 24 h glucose levels (6.8±0.2 vs 7.6±0.3 mmol/l, p<0.01). Energy expenditure over 24 h was unaffected; nevertheless, TRE decreased 24 h glucose oxidation (260.2±7.6 vs 277.8±10.7 g/day, p=0.04). No adverse events were reported that were related to the interventions. CONCLUSIONS/INTERPRETATION: We show that a 10 h TRE regimen is a feasible, safe and effective means to improve 24 h glucose homeostasis in free-living adults with type 2 diabetes. However, these changes were not accompanied by changes in insulin sensitivity or hepatic glycogen. TRIAL REGISTRATION: ClinicalTrials.gov NCT03992248 FUNDING: ZonMW, 459001013.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Estudos Cross-Over , Diabetes Mellitus Tipo 2/metabolismo , Glucose , Homeostase , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Lipídeos , Glicogênio Hepático
3.
Diabetologia ; 65(4): 721-732, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106618

RESUMO

AIMS/HYPOTHESIS: In our modern society, artificial light is available around the clock and most people expose themselves to electrical light and light-emissive screens during the dark period of the natural light/dark cycle. Such suboptimal lighting conditions have been associated with adverse metabolic effects, and redesigning indoor lighting conditions to mimic the natural light/dark cycle more closely holds promise to improve metabolic health. Our objective was to compare metabolic responses to lighting conditions that resemble the natural light/dark cycle in contrast to suboptimal lighting in individuals at risk of developing metabolic diseases. METHODS: Therefore, we here performed a non-blinded, randomised, controlled, crossover trial in which overweight insulin-resistant volunteers (n = 14) were exposed to two 40 h laboratory sessions with different 24 h lighting protocols while staying in a metabolic chamber under real-life conditions. In the Bright day-Dim evening condition, volunteers were exposed to electric bright light (~1250 lx) during the daytime (08:00-18:00 h) and to dim light (~5 lx) during the evening (18:00-23:00 h). Vice versa, in the Dim day-Bright evening condition, volunteers were exposed to dim light during the daytime and bright light during the evening. Randomisation and allocation to light conditions were carried out by sequential numbering. During both lighting protocols, we performed 24 h indirect calorimetry, and continuous core body and skin temperature measurements, and took frequent blood samples. The primary outcome was plasma glucose focusing on the pre- and postprandial periods of the intervention. RESULTS: Spending the day in bright light resulted in a greater increase in postprandial triacylglycerol levels following breakfast, but lower glucose levels preceding the dinner meal at 18:00 h, compared with dim light (5.0 ± 0.2 vs 5.2 ± 0.2 mmol/l, n = 13, p=0.02). Dim day-Bright evening reduced the increase in postprandial glucose after dinner compared with Bright day-Dim evening (incremental AUC: 307 ± 55 vs 394 ± 66 mmol/l × min, n = 13, p=0.009). After the Bright day-Dim evening condition the sleeping metabolic rate was identical compared with the baseline night, whereas it dropped after Dim day-Bright evening. Melatonin secretion in the evening was strongly suppressed for Dim day-Bright evening but not for Bright day-Dim evening. Distal skin temperature for Bright day-Dim evening was lower at 18:00 h (28.8 ± 0.3°C vs 29.9 ± 0.4°C, n = 13, p=0.039) and higher at 23:00 h compared with Dim day-Bright evening (30.1 ± 0.3°C vs 28.8 ± 0.3°C, n = 13, p=0.006). Fasting and postprandial plasma insulin levels and the respiratory exchange ratio were not different between the two lighting protocols at any time. CONCLUSIONS/INTERPRETATION: Together, these findings suggest that the indoor light environment modulates postprandial substrate handling, energy expenditure and thermoregulation of insulin-resistant volunteers in a time-of-day-dependent manner. TRIAL REGISTRATION: ClinicalTrials.gov NCT03829982. FUNDING: We acknowledge the financial support from the Netherlands Cardiovascular Research Initiative: an initiative with support from the Dutch Heart Foundation (CVON2014-02 ENERGISE).


Assuntos
Insulina , Fotoperíodo , Regulação da Temperatura Corporal , Ritmo Circadiano/fisiologia , Metabolismo Energético , Glucose , Humanos
4.
Am J Physiol Endocrinol Metab ; 321(4): E453-E463, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396784

RESUMO

Intramyocellular lipid (IMCL) content is an energy source during acute exercise. Nonesterified fatty acid (NEFA) levels can compete with IMCL utilization during exercise. IMCL content is stored as lipid droplets (LDs) that vary in size, number, subcellular distribution, and in coating with LD protein PLIN5. Little is known about how these factors are affected during exercise and recovery. Here, we aimed to investigate the effects of acute exercise with and without elevated NEFA levels on intramyocellular LD size and number, intracellular distribution and PLIN5 coating, using high-resolution confocal microscopy. In a crossover study, 9 healthy lean young men performed a 2-h moderate intensity cycling protocol in the fasted (high NEFA levels) and glucose-fed state (low NEFA levels). IMCL and LD parameters were measured at baseline, directly after exercise and 4 h postexercise. We found that total IMCL content was not changed directly after exercise (irrespectively of condition), but IMCL increased 4 h postexercise in the fasting condition, which was due to an increased number of LDs rather than changes in size. The effects were predominantly detected in type I muscle fibers and in LDs coated with PLIN5. Interestingly, subsarcolemmal, but not intermyofibrillar IMCL content, was decreased directly after exercise in the fasting condition and was replenished during the 4 h recovery period. In conclusion, acute exercise affects IMCL storage during exercise and recovery, particularly in type I muscle fibers, in the subsarcolemmal region and in the presence of PLIN5. Moreover, the effects of exercise on IMCL content are affected by plasma NEFA levels.NEW & NOTEWORTHY Skeletal muscle stores lipids in lipid droplets (LDs) that can vary in size, number, and location and are a source of energy during exercise. Specifically, subsarcolemmal LDs were used during exercise when fasted. Exercising in the fasted state leads to postrecovery elevation in IMCL levels due to an increase in LD number in type I muscle fibers, in subsarcolemmal region and decorated with PLIN5. These effects are blunted by glucose ingestion during exercise and recovery.


Assuntos
Exercício Físico , Ácidos Graxos não Esterificados/sangue , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Músculo Esquelético/metabolismo , Perilipina-5/metabolismo , Magreza/metabolismo , Adulto , Biomarcadores/sangue , Estudos Cross-Over , Jejum , Seguimentos , Humanos , Metabolismo dos Lipídeos , Masculino , Prognóstico , Adulto Jovem
5.
Diabetologia ; 63(6): 1211-1222, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32185462

RESUMO

AIMS/HYPOTHESIS: Physical inactivity, low mitochondrial function, increased intramyocellular lipid (IMCL) deposition and reduced insulin sensitivity are common denominators of chronic metabolic disorders, like obesity and type 2 diabetes. Yet, whether low mitochondrial function predisposes to insulin resistance in humans is still unknown. METHODS: Here we investigated, in an intervention study, whether muscle with low mitochondrial oxidative capacity, induced by one-legged physical inactivity, would feature stronger signs of lipid-induced insulin resistance. To this end, ten male participants (age 22.4 ± 4.2 years, BMI 21.3 ± 2.0 kg/m2) underwent a 12 day unilateral lower-limb suspension with the contralateral leg serving as an active internal control. RESULTS: In vivo, mitochondrial oxidative capacity, assessed by phosphocreatine (PCr)-recovery half-time, was lower in the inactive vs active leg. Ex vivo, palmitate oxidation to 14CO2 was lower in the suspended leg vs the active leg; however, this did not result in significantly higher [14C]palmitate incorporation into triacylglycerol. The reduced mitochondrial function in the suspended leg was, however, paralleled by augmented IMCL content in both musculus tibialis anterior and musculus vastus lateralis, and by increased membrane bound protein kinase C (PKC) θ. Finally, upon lipid infusion, insulin signalling was lower in the suspended vs active leg. CONCLUSIONS/INTERPRETATION: Together, these results demonstrate, in a unique human in vivo model, that a low mitochondrial oxidative capacity due to physical inactivity directly impacts IMCL accumulation and PKCθ translocation, resulting in impaired insulin signalling upon lipid infusion. This demonstrates the importance of mitochondrial oxidative capacity and muscle fat accumulation in the development of insulin resistance in humans. TRIAL REGISTRATION: ClinicalTrial.gov NCT01576250. FUNDING: PS was supported by a 'VICI' Research Grant for innovative research from the Netherlands Organization for Scientific Research (Grant 918.96.618).


Assuntos
Insulina/metabolismo , Perna (Membro)/fisiologia , Músculo Esquelético/metabolismo , Restrição Física/fisiologia , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Mitocôndrias/metabolismo , Músculo Esquelético/fisiologia , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
6.
J Cell Physiol ; 235(12): 9851-9863, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32452584

RESUMO

Using an unbiased high-throughput microRNA (miRNA)-silencing screen combined with functional readouts for mitochondrial oxidative capacity in C2C12 myocytes, we previously identified 19 miRNAs as putative regulators of skeletal muscle mitochondrial metabolism. In the current study, we highlight miRNA-204-5p, identified from this screen, and further studied its role in the regulation of skeletal muscle mitochondrial function. Following silencing of miRNA-204-5p in C2C12 myotubes, gene and protein expression were assessed using quantitative polymerase chain reaction, microarray analysis, and western blot analysis, while morphological changes were studied by confocal microscopy. In addition, miRNA-204-5p expression was quantified in human skeletal muscle biopsies and associated with in vivo mitochondrial oxidative capacity. Transcript levels of PGC-1α (3.71-fold; p < .01), predicted as an miR-204-5p target, as well as mitochondrial DNA copy number (p < .05) and citrate synthase activity (p = .06) were increased upon miRNA-204-5p silencing in C2C12 myotubes. Silencing of miRNA-204-5p further resulted in morphological changes, induced gene expression of autophagy marker light chain 3 protein b (LC3B; q = .05), and reduced expression of the mitophagy marker FUNDC1 (q = .01). Confocal imaging revealed colocalization between the autophagosome marker LC3B and the mitochondrial marker OxPhos upon miRNA-204-5p silencing. Finally, miRNA-204-5p was differentially expressed in human subjects displaying large variation in oxidative capacity and its expression levels associated with in vivo measures of skeletal muscle mitochondrial function. In summary, silencing of miRNA-204-5p in C2C12 myotubes stimulated mitochondrial biogenesis, impacted on cellular morphology, and altered expression of markers related to autophagy and mitophagy. The association between miRNA-204-5p and in vivo mitochondrial function in human skeletal muscle further identifies miRNA-204-5p as an interesting modulator of skeletal muscle mitochondrial metabolism.


Assuntos
MicroRNAs/genética , Mitocôndrias/genética , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Animais , Autofagia/genética , Biópsia , Humanos , Camundongos , Mitocôndrias Musculares/genética , Mitocôndrias Musculares/metabolismo , Mitofagia/genética , Biogênese de Organelas , Oxirredução , Estresse Oxidativo/genética
7.
J Physiol ; 596(5): 857-868, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29110300

RESUMO

KEY POINTS: Intramyocellular lipid storage is negatively associated with insulin sensitivity. However, endurance trained athletes and type 2 diabetes mellitus (T2DM) patients store similar amounts of lipids in their muscle; the so-called athlete's paradox. Compared to T2DM, trained athletes possess higher levels of perilipin 5 (PLIN5), a lipid droplet (LD) coating protein. We examined whether coating LD with PLIN5 affects the pattern of muscle lipid (LD size and number) in relation to the athlete's paradox. Despite differences in PLIN5 protein content, we observed that coating the LD with PLIN5 could not explain the observed differences in LD size and number between athletes and T2DM. PLIN5-coated LDs were positively associated with oxidative capacity but not with insulin sensitivity. We conclude that coating of LDs with PLIN5 cannot causally explain the athlete's paradox. ABSTRACT: Intramyocellular lipid (IMCL) hampers insulin sensitivity, albeit not in endurance-trained athletes (Trained). Compared to type 2 diabetes mellitus (T2DM) patients, Trained subjects have high levels of perilipin 5 (PLIN5). In the present study, we tested whether the fraction of PLIN5-coated lipid droplets (LDs) is a determinant of skeletal muscle insulin sensitivity and contributes to the athlete's paradox. Muscle biopsies were taken from eight Trained, Lean sedentary, Obese and T2DM subjects. Trained, Obese and T2DM subjects were matched for total IMCL content. Confocal images were analysed for lipid area fraction, LD size and number and PLIN5+ and PLIN5- LDs were measured. A stepwise linear regression was performed to identify factors explaining observed variance in glucose infusion rate (GIR). Trained and T2DM subjects stored IMCL differently; Trained subjects had a higher number of LDs compared to T2DM subjects (0.037 ± 0.004 µm-2 vs. 0.023 ± 0.003 µm-2 , P = 0.024) that were non-significantly smaller (0.27 ± 0.01 µm2 vs. 0.32 ± 0.02 µm2 , P = 0.197, Trained vs. T2DM). Even though total PLIN5 protein content was almost double in Trained vs. T2DM subjects (1.65 ± 0.21 AU vs. 0.89 ± 0.09 AU, P = 0.004), PLIN5 coating did not affect LD number or size significantly. Of the observed variance in GIR, the largest fraction by far (70.2%) was explained by maximal oxygen uptake. Adding PLIN5 protein content or PLIN5+ LDs increased the explained variance in GIR (74.7% and 80.7% for PLIN5 protein content and PLIN5+ LDs, respectively). Thus, the putative relationship between PLIN5 and insulin sensitivity is at best indirect and is apparent only in conjunction with maximal oxygen uptake. Hence, PLIN5 abundance cannot be causally linked to the athlete's paradox.


Assuntos
Atletas , Diabetes Mellitus Tipo 2/fisiopatologia , Resistência à Insulina , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Músculo Esquelético/fisiopatologia , Perilipina-5/metabolismo , Adulto , Estudos de Casos e Controles , Exercício Físico , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/fisiopatologia , Resistência Física , Adulto Jovem
8.
Diabetologia ; 59(5): 1030-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26886198

RESUMO

AIMS/HYPOTHESIS: Dissipating energy via mitochondrial uncoupling has been suggested to contribute to enhanced insulin sensitivity. We hypothesised that skeletal muscle mitochondria of endurance-trained athletes have increased sensitivity for fatty acid (FA)-induced uncoupling, which is driven by the mitochondrial protein adenine nucleotide translocase 1 (ANT1). METHODS: Capacity for FA-induced uncoupling was measured in endurance-trained male athletes (T) and sedentary young men (UT) in an observational study and also in isolated skeletal muscle mitochondria from Zucker diabetic fatty (ZDF) rats and C2C12 myotubes following small interfering RNA (siRNA)-mediated gene silencing of ANT1. Thus, fuelled by glutamate/succinate (fibres) or pyruvate (mitochondria and myotubes) and in the presence of oligomycin to block ATP synthesis, increasing levels of oleate (fibres) or palmitate (mitochondria and myotubes) were automatically titrated while respiration was monitored. Insulin sensitivity was measured by hyperinsulinaemic-euglycaemic clamp in humans and via insulin-stimulated glucose uptake in myotubes. RESULTS: Skeletal muscle from the T group displayed increased sensitivity to FA-induced uncoupling (p = 0.011) compared with muscle from the UT group, and this was associated with elevated insulin sensitivity (p = 0.034). ANT1 expression was increased in T (p = 0.013). Mitochondria from ZDF rats displayed decreased sensitivity for FA-induced uncoupling (p = 0.008). This difference disappeared in the presence of the adenine nucleotide translocator inhibitor carboxyatractyloside. Partial knockdown of ANT1 in C2C12 myotubes decreased sensitivity to the FA-induced uncoupling (p = 0.008) and insulin-stimulated glucose uptake (p = 0.025) compared with controls. CONCLUSIONS/INTERPRETATION: Increased sensitivity to FA-induced uncoupling is associated with enhanced insulin sensitivity and is affected by ANT1 activity in skeletal muscle. FA-induced mitochondrial uncoupling may help to preserve insulin sensitivity in the face of a high supply of FAs. TRIAL REGISTRATION: www.trialregister.nl NTR2002.


Assuntos
Translocador 1 do Nucleotídeo Adenina/metabolismo , Ácidos Graxos/farmacologia , Músculo Esquelético/metabolismo , Translocador 1 do Nucleotídeo Adenina/genética , Animais , Humanos , Técnicas In Vitro , Insulina/genética , Insulina/metabolismo , Resistência à Insulina/genética , Masculino , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Translocases Mitocondriais de ADP e ATP/genética , Translocases Mitocondriais de ADP e ATP/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Ácido Oleico/farmacologia , Ácido Palmítico/farmacologia , Ratos , Ratos Zucker
9.
Clin Nutr ; 42(12): 2353-2362, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37862821

RESUMO

OBJECTIVE: Human energy expenditure and substrate oxidation are under circadian control and food intake is a time cue for the human biological clock, leading to 24h feeding-fasting cycles in energy and substrate metabolism. In recent years, (intermittent) fasting protocols have also become popular to improve metabolic health. Here, we aimed to investigate the impact of food intake on the 24h patterns of energy metabolism as well as to provide data on the timeline of changes in energy metabolism that occur upon an extended period of fasting. RESEARCH DESIGN AND METHODS: In a randomized, cross-over design, twelve healthy males underwent a 60h fast which was compared to a 60h fed condition. In the fed condition meals were provided at energy balance throughout the study. Conditions were separated by a two week period of habitual diet. Volunteers resided in a respiration chamber for the entire 60h to measure energy expenditure and substrate oxidation hour by hour. Volunteers performed a standardized activity protocol while in the chamber. Blood samples were drawn after 12, 36 and 60h. RESULTS: Immediately following the breakfast meal (in the fed condition), fat oxidation became higher in the fasted condition compared to the fed condition and remained elevated throughout the study period. The initial rapid increase in fat oxidation corresponded with a decline in the hepatokine activin A (r = -0.86, p = 0.001). The contribution of fat oxidation to total energy expenditure gradually increased with extended abstinence from food, peaking after 51h of fasting at 160 mg/min. Carbohydrate oxidation stabilized at a low level during the second day of fasting and averaged around 60 mg/min with only modest elevations in response to physical activity. Although 24h energy expenditure was significantly lower with prolonged fasting (11.0 ± 0.4 vs 9.8 ± 0.2 and 10.9 ± 0.3 vs 10.3 ± 0.3 MJ in fed vs fasting, day 2 and 3 respectively, p < 0.01), the 24h fluctuations in energy expenditure were comparable between the fasted and fed condition. The fluctuations in substrate oxidation were, however, significantly (p < 0.001 for both carbohydrate and fat oxidation) altered in the fasted state, favouring fat oxidation. CONCLUSIONS: Energy expenditure displays a day-night rhythm, which is independent of food intake. In contrast, the day-night rhythm of both carbohydrate and fat oxidation is mainly driven by food intake. Upon extended fasting, the absolute rate of fat oxidation rapidly increases and keeps increasing during a 60h fast, whereas carbohydrate oxidation becomes progressively diminished. TRIAL REGISTRATION: www.trialregister.nl NTR 2042.


Assuntos
Metabolismo Energético , Jejum , Masculino , Humanos , Estudos Cross-Over , Metabolismo Energético/fisiologia , Oxirredução , Periodicidade , Carboidratos
10.
Metabolism ; 140: 155396, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36592688

RESUMO

AIMS/HYPOTHESIS: Sodium-glucose cotransporter 2 inhibitor (SGLT2i) treatment in type 2 diabetes mellitus patients results in glucosuria, causing an energy loss, and triggers beneficial metabolic adaptations. It is so far unknown if SGLT2i exerts beneficial metabolic effects in prediabetic insulin resistant individuals, yet this is of interest since SGLT2is also reduce the risk for progression of heart failure and chronic kidney disease in patients without diabetes. METHODS: Fourteen prediabetic insulin resistant individuals (BMI: 30.3 ± 2.1 kg/m2; age: 66.3 ± 6.2 years) underwent 2-weeks of treatment with dapagliflozin (10 mg/day) or placebo in a randomized, placebo-controlled, cross-over design. Outcome parameters include 24-hour and nocturnal substrate oxidation, and twenty-four-hour blood substrate and insulin levels. Hepatic glycogen and lipid content/composition were measured by MRS. Muscle biopsies were taken to measure mitochondrial oxidative capacity and glycogen and lipid content. RESULTS: Dapagliflozin treatment resulted in a urinary glucose excretion of 36 g/24-h, leading to a negative energy and fat balance. Dapagliflozin treatment resulted in a higher 24-hour and nocturnal fat oxidation (p = 0.043 and p = 0.039, respectively), and a lower 24-hour carbohydrate oxidation (p = 0.048). Twenty-four-hour plasma glucose levels were lower (AUC; p = 0.016), while 24-hour free fatty acids and nocturnal ß-hydroxybutyrate levels were higher (AUC; p = 0.002 and p = 0.012, respectively) after dapagliflozin compared to placebo. Maximal mitochondrial oxidative capacity was higher after dapagliflozin treatment (dapagliflozin: 87.6 ± 5.4, placebo: 78.1 ± 5.5 pmol/mg/s, p = 0.007). Hepatic glycogen and lipid content were not significantly changed by dapagliflozin compared to placebo. However, muscle glycogen levels were numerically higher in the afternoon in individuals on placebo (morning: 332.9 ± 27.9, afternoon: 368.8 ± 13.1 nmol/mg), while numerically lower in the afternoon on dapagliflozin treatment (morning: 371.7 ± 22.8, afternoon: 340.5 ± 24.3 nmol/mg). CONCLUSIONS/INTERPRETATION: Dapagliflozin treatment of prediabetic insulin resistant individuals for 14 days resulted in significant metabolic adaptations in whole-body and skeletal muscle substrate metabolism despite being weight neutral. Dapagliflozin improved fat oxidation and ex vivo skeletal muscle mitochondrial oxidative capacity, mimicking the effects of calorie restriction. TRIAL REGISTRATION: ClinicalTrials.gov NCT03721874.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Pessoa de Meia-Idade , Idoso , Insulina/uso terapêutico , Diabetes Mellitus Tipo 2/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Estudos Cross-Over , Glicemia/metabolismo , Glicogênio Hepático , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Compostos Benzidrílicos/farmacologia , Glucose , Lipídeos , Sódio , Método Duplo-Cego , Hipoglicemiantes/uso terapêutico
11.
Nat Commun ; 14(1): 173, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635304

RESUMO

ß2-agonist treatment improves skeletal muscle glucose uptake and whole-body glucose homeostasis in rodents, likely via mTORC2-mediated signalling. However, human data on this topic is virtually absent. We here investigate the effects of two-weeks treatment with the ß2-agonist clenbuterol (40 µg/day) on glucose control as well as energy- and substrate metabolism in healthy young men (age: 18-30 years, BMI: 20-25 kg/m2) in a randomised, placebo-controlled, double-blinded, cross-over study (ClinicalTrials.gov-identifier: NCT03800290). Randomisation occurred by controlled randomisation and the final allocation sequence was seven (period 1: clenbuterol, period 2: placebo) to four (period 1: placebo, period 2: clenbuterol). The primary and secondary outcome were peripheral insulin-stimulated glucose disposal and skeletal muscle GLUT4 translocation, respectively. Primary analyses were performed on eleven participants. No serious adverse events were reported. The study was performed at Maastricht University, Maastricht, The Netherlands, between August 2019 and April 2021. Clenbuterol treatment improved peripheral insulin-stimulated glucose disposal by 13% (46.6 ± 3.5 versus 41.2 ± 2.7 µmol/kg/min, p = 0.032), whereas skeletal muscle GLUT4 translocation assessed in overnight fasted muscle biopsies remained unaffected. These results highlight the potential of ß2-agonist treatment in improving skeletal muscle glucose uptake and underscore the therapeutic value of this pathway for the treatment of type 2 diabetes. However, given the well-known (cardiovascular) side-effects of systemic ß2-agonist treatment, further exploration on the underlying mechanisms is needed to identify viable therapeutic targets.


Assuntos
Clembuterol , Diabetes Mellitus Tipo 2 , Masculino , Humanos , Adolescente , Adulto Jovem , Adulto , Glucose/metabolismo , Clembuterol/farmacologia , Clembuterol/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Estudos Cross-Over , Músculo Esquelético/metabolismo
12.
Biochim Biophys Acta ; 1807(9): 1095-105, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21565164

RESUMO

The function of uncoupling protein 3 (UCP3) is still not established. Mitochondrial uncoupling, control of ROS production, protection against lipotoxicity and protection against oxidative stress are functions classically discussed. To establish a role for UCP3 in these functions, we have here used UCP3 (-/-) mice, backcrossed for 10 generations on a C57Bl/6 background. In isolated skeletal muscle mitochondria, we examined uncoupled respiration, both unstimulated and in the presence of fatty acids. We did not observe any difference between mitochondria from wildtype and UCP3 (-/-) mice. We measured H(2)O(2) production rate and respiration rate under reactive oxygen species-generating conditions (succinate without rotenone) but found no effect of UCP3. We tested two models of acute lipotoxicity-fatty acid-induced oxidative inhibition and fatty acid-induced swelling-but did not observe any protective effect of UCP3. We examined oxidative stress by quantifying 4-hydroxynonenal protein adducts and protein carbonyls in the mitochondria-but did not observe any protective effect of UCP3. We conclude that under the experimental conditions tested here, we find no evidence for the function of UCP3 being basal or induced uncoupling, regulation of ROS production, protection against acute lipotoxicity or protection against oxidative damage.


Assuntos
Canais Iônicos/fisiologia , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Respiração , Animais , Western Blotting , Canais Iônicos/genética , Camundongos , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Proteína Desacopladora 3
13.
J Cell Physiol ; 227(3): 1026-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21520076

RESUMO

Skeletal muscle mitochondrial dysfunction has been linked to several disease states as well as the process of aging. A possible factor involved is the peroxisome proliferator-activated receptor (PPAR) γ co-activator 1α (PGC-1α), a major player in the regulation of skeletal muscle mitochondrial metabolism. However, it is currently unknown whether PGC-1α, besides stimulating mitochondrial proliferation, also affects the functional capacity per mitochondrion. Therefore, we here tested whether PGC-1α overexpression, besides increasing mitochondrial content, also leads to intrinsic mitochondrial adaptations. Skeletal muscle mitochondria from 10 male, muscle-specific PGC-1α overexpressing mice (PGC-1αTg) and 8 wild-type (WT) mice were isolated. Equal mitochondrial quantities were then analyzed for their oxidative capacity by high-resolution respirometry, fuelled by a carbohydrate-derived (pyruvate) and a lipid (palmitoyl-CoA plus carnitine) substrate. Additionally, mitochondria were tested for reactive oxygen species (superoxide) production and fatty acid (FA)-induced uncoupling. PGC-1αTg mitochondria were characterized by an improved intrinsic mitochondrial fat oxidative capacity as evidenced by pronounced increase in ADP-stimulated respiration (P < 0.001) and maximal uncoupled respiration (P < 0.001) upon palmitoyl-CoA plus carnitine. Interestingly, intrinsic mitochondrial capacity on a carbohydrate-derived substrate tended to be reduced. Furthermore, the sensitivity to FA-induced uncoupling was diminished in PGC-1αTg mitochondria (P = 0.02) and this was accompanied by a blunted reduction in mitochondrial ROS production upon FAs in PGC-1αTg versus WT mitochondria (P = 0.04). Uncoupling protein 3 (UCP3) levels were markedly reduced in PGC-1αTg mitochondria (P < 0.001). Taken together, in addition to stimulating mitochondrial proliferation in skeletal muscle, we show here that overexpression of PGC-1α leads to intrinsic mitochondrial adaptations that seem restricted to fat metabolism.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Mitocôndrias Musculares/genética , Músculo Esquelético/fisiologia , Transativadores/biossíntese , Transativadores/genética , Animais , Metabolismo dos Carboidratos/genética , Metabolismo dos Carboidratos/fisiologia , Respiração Celular/genética , Metabolismo Energético/genética , Metabolismo Energético/fisiologia , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mitocôndrias Musculares/fisiologia , Músculo Esquelético/citologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transativadores/fisiologia , Fatores de Transcrição
14.
Physiol Rep ; 9(2): e14692, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33476086

RESUMO

In non-athletes, insulin sensitivity correlates negatively with intramyocellular lipid (IMCL) content. In athletes, however, a pattern of benign IMCL storage exists, which is characterized by lipid storage in type I muscle fibres, in small and numerous lipid droplets (LDs) preferable coated with PLIN5, without affecting insulin sensitivity. Administration of resveratrol has been promoted for its beneficial effects on glucose homeostasis. We observed that 30 days of oral resveratrol administration (150 mg/day) in metabolically compromised individuals showed a 33% increase in IMCL (placebo vs. resveratrol; 0.86 ± 0.090 AU vs. 1.14 ± 0.11 AU, p = 0.003) without impeding insulin sensitivity. Thus, the aim of the present study was to examine if a resveratrol-mediated increase in IMCL content, in metabolically compromised individuals, changes the LD phenotype towards the phenotype we previously observed in athletes. For this, we studied IMCL, LD number, LD size, subcellular distribution and PLIN5 coating in different fibre types using high-resolution confocal microscopy. As proof of concept, we observed a 2.3-fold increase (p = 0.038) in lipid accumulation after 48 h of resveratrol incubation in cultured human primary muscle cells. In vivo analysis showed that resveratrol-induced increase in IMCL is predominantly in type I muscle fibres (placebo vs. resveratrol; 0.97 ± 0.16% vs. 1.26 ± 0.09%; p = 0.030) in both the subsarcolemmal (p = 0.016) and intermyofibrillar region (p = 0.026) and particularly in PLIN5-coated LDs (p = 0.024). These data indicate that administration of resveratrol augments IMCL content in metabolically compromised individuals towards a LD phenotype that mimics an 'athlete like phenotype'.


Assuntos
Atletas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Exercício Físico , Resistência à Insulina , Gotículas Lipídicas/efeitos dos fármacos , Músculo Quadríceps/efeitos dos fármacos , Resveratrol/farmacologia , Antioxidantes/farmacologia , Biópsia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Cultura Primária de Células , Ensaios Clínicos Controlados Aleatórios como Assunto
15.
J Appl Physiol (1985) ; 130(1): 193-205, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33090911

RESUMO

Muscle glycogen use and glucose uptake during cold exposure increases with shivering intensity. We hypothesized that cold exposure, with shivering, would subsequently increase glucose tolerance. Fifteen healthy men (age = 26 ± 5 yr, body mass index = 23.9 ± 2.5 kg·m-2 ) completed two experimental trials after an overnight fast. Cold exposure (10°C) was applied during the first trial, via a water-perfused suit, to induce at least 1 h of shivering in each participant. For comparison, a thermoneutral (32°C) condition was applied during the second trial, under identical conditions, for the same duration as determined during the cold exposure. After the thermal exposures, participants rested under a duvet for 90 min, which was followed by a 3-h oral glucose tolerance test. Skin temperature (means ± SE) decreased at the end of the cold exposure compared with that before (26.9 ± 0.3 vs. 33.7 ± 0.1°C, P < 0.001). Total energy expenditure during the 1 h of shivering was greater than that during the time-matched thermoneutral condition (619 ± 23 vs. 309 ± 7 kJ, P < 0.001). Cold exposure increased the areas under the glucose and insulin curves by 4.8% (P = 0.066) and 24% (P = 0.112), respectively. The Matsuda and insulin-glucose indices changed after cold exposure by -21% (P = 0.125) and 30% (P = 0.100), respectively. Cold exposure did not subsequently increase glucose tolerance. Instead, the Matsuda and insulin-glucose indices suggest insulin resistance post shivering.NEW & NOTEWORTHY This is the first study to examine the effect of cold-induced shivering on subsequent glucose tolerance determined under thermoneutral conditions. Plasma glucose and insulin concentrations increased during the oral glucose tolerance test post shivering. Additionally, insulin sensitivity indices suggest insulin resistance following cold exposure. These results provide evidence for an acute post-shivering response, whereby glucose metabolism has deteriorated, contrary to the results from earlier studies on cold acclimation.


Assuntos
Estremecimento , Termogênese , Adulto , Regulação da Temperatura Corporal , Temperatura Baixa , Glucose , Humanos , Masculino , Temperatura Cutânea , Adulto Jovem
16.
J Lipid Res ; 51(2): 352-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19690335

RESUMO

Skeletal muscle triglyceride accumulation is associated with insulin resistance in obesity. Recently, it has been suggested that alpha lipoic acid (ALA) improves insulin sensitivity by lowering triglyceride accumulation in nonadipose tissues via activation of skeletal muscle AMP-activated protein kinase (AMPK). We examined whether chronic ALA supplementation prevents muscular lipid accumulation that is associated with high-fat diets via activation of AMPK. In addition, we tested if ALA supplementation was able to improve insulin sensitivity in rats fed low- and high-fat diets (LFD, HFD). Supplementing male Wistar rats with 0.5% ALA for 8 weeks significantly reduced body weight, both on LFD and HFD (-24% LFD+ALA vs. LFD, P < 0.01, and -29% HFD+ALA vs. HFD, P < 0.001). Oil red O lipid staining revealed a 3-fold higher lipid content in skeletal muscle after HFD compared with LFD and ALA-supplemented groups (P < 0.05). ALA improved whole body glucose tolerance ( approximately 20% lower total area under the curve (AUC) in ALA supplemented groups vs. controls, P < 0.05). These effects were not mediated by increased muscular AMPK activation or ALA-induced improvement of muscular insulin sensitivity. To conclude, the prevention of HFD-induced muscular lipid accumulation and the improved whole body glucose tolerance are likely secondary effects due to the anorexic nature of ALA.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gorduras na Dieta/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Músculos/efeitos dos fármacos , Músculos/metabolismo , Ácido Tióctico/farmacologia , Absorção/efeitos dos fármacos , Adulto , Animais , Composição Corporal/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Suplementos Nutricionais , Ingestão de Alimentos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Glucose/metabolismo , Teste de Tolerância a Glucose , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/prevenção & controle , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Ácido Tióctico/administração & dosagem
17.
Clin Sci (Lond) ; 119(7): 293-301, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20465545

RESUMO

Exercise training is advocated in insulin resistance and statins are used to treat hyperlipidaemia, two cardiometabolic risk factors often presenting concurrently. Statin intake may blunt mitochondrial function and the adaptive response to exercise training. Thus combining exercise training with statin administration may have adverse effects. We examined whether improvements in cardiometabolic risk factors, insulin sensitivity and mitochondrial function mediated by progressive exercise training are affected by statin use. A group of 14 obese elderly males on statins (ST) and 22 matched control subjects (C) were examined. Results on in vivo mitochondrial function [MRS (magnetic resonance spectroscopy)], mitochondrial density (Western blotting), insulin sensitivity (clamp) and metabolic flexibility (indirect calorimetry) were compared before and after a 12-week combined progressive exercise training programme (3 x per week; 45 min per session). Except for LDL (low-density lipoprotein) cholesterol, all pre-training values were comparable between statin users and control subjects. In vivo mitochondrial function and mitochondrial density improved by training in both groups. Interestingly, blood-lipid profile, insulin sensitivity (+72%), non-oxidative and oxidative glucose disposal (+38% and +112%) and insulin-mediated suppression of fat oxidation (-62%) improved only in the ST group. We conclude that statin treatment did not impede exercise performance or tolerance, mitochondrial function or mass. In addition, training-induced improvements in glucose homoeostasis were preserved in the ST group. Strikingly, the insulin-sensitizing effect of training was more prominent in the ST group than in the C group. The combined prescription of statins along with exercise training is safe and should be considered for subjects prone to develop insulin resistance.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Síndrome Metabólica/terapia , Obesidade/terapia , Glicemia/metabolismo , Terapia Combinada , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Exercício Físico/fisiologia , Terapia por Exercício/métodos , Tolerância ao Exercício/fisiologia , Técnica Clamp de Glucose/métodos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/efeitos adversos , Insulina/sangue , Resistência à Insulina , Lipídeos/sangue , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Pessoa de Meia-Idade , Mitocôndrias Musculares/fisiologia , Obesidade/sangue , Obesidade/fisiopatologia
18.
Am J Clin Nutr ; 112(4): 1029-1038, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492138

RESUMO

BACKGROUND: Effects of resveratrol on metabolic health have been studied in several short-term human clinical trials, with conflicting results. Next to dose, the duration of the clinical trials may explain the lack of effect in some studies, but long-term studies are still limited. OBJECTIVES: The objective of this study was to investigate the effects of 6-mo resveratrol supplementation on metabolic health outcome parameters. METHODS: Forty-one overweight men and women (BMI: 27-35 kg/m2; aged 40-70 y) completed the study. In this parallel-group, double-blind clinical trial, participants were randomized to receive either 150 mg/d of resveratrol (n = 20) or placebo (n = 21) for 6 mo. The primary outcome of the study was insulin sensitivity, using the Matsuda index. Secondary outcome measures were intrahepatic lipid (IHL) content, body composition, resting energy metabolism, blood pressure, plasma markers, physical performance, quality of life, and quality of sleep. Postintervention differences between the resveratrol and placebo arms were evaluated by ANCOVA adjusting for corresponding preintervention variables. RESULTS: Preintervention, no differences were observed between the 2 treatment arms. Insulin sensitivity was not affected after 6 mo of resveratrol treatment (adjusted mean Matsuda index: 5.18 ± 0.35 in the resveratrol arm compared with 5.50 ± 0.34 in the placebo arm), although there was a significant difference in postintervention glycated hemoglobin (HbA1c) between the arms (P = 0.007). The adjusted means showed that postintervention HbA1c was lower on resveratrol (35.8 ± 0.43 mmol/mol) compared with placebo (37.6 ± 0.44 mmol/mol). No postintervention differences were found in IHL, body composition, blood pressure, energy metabolism, physical performance, or quality of life and sleep between treatment arms. CONCLUSIONS: After 6 mo of resveratrol supplementation, insulin sensitivity was unaffected in the resveratrol arm compared with the placebo arm. Nonetheless, HbA1c was lower in overweight men and women in the resveratrol arm. This trial was registered at Clinicaltrials.gov as NCT02565979.


Assuntos
Resistência à Insulina , Sobrepeso/metabolismo , Resveratrol/administração & dosagem , Adulto , Idoso , Composição Corporal , Suplementos Nutricionais , Metabolismo Energético , Feminino , Hemoglobinas Glicadas/análise , Humanos , Masculino , Pessoa de Meia-Idade , Desempenho Físico Funcional , Qualidade de Vida
19.
Mol Metab ; 41: 101050, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32659272

RESUMO

OBJECTIVE: Skeletal muscle mitochondrial function and energy metabolism displays day-night rhythmicity in healthy, young individuals. Twenty-four-hour rhythmicity of metabolism has been implicated in the etiology of age-related metabolic disorders. Whether day-night rhythmicity in skeletal muscle mitochondrial function and energy metabolism is altered in older, metabolically comprised humans remains unknown. METHODS: Twelve male overweight volunteers with impaired glucose tolerance and insulin sensitivity stayed in a metabolic research unit for 2 days under free living conditions with regular meals. Indirect calorimetry was performed at 5 time points (8 AM, 1 PM, 6 PM, 11 PM, 4 AM), followed by a muscle biopsy. Mitochondrial oxidative capacity was measured in permeabilized muscle fibers using high-resolution respirometry. RESULTS: Mitochondrial oxidative capacity did not display rhythmicity. The expression of circadian core clock genes BMAL1 and REV-ERBα showed a clear day-night rhythm (p < 0.001), peaking at the end of the waking period. Remarkably, the repressor clock gene PER2 did not show rhythmicity, whereas PER1 and PER3 were strongly rhythmic (p < 0.001). On the whole-body level, resting energy expenditure was highest in the late evening (p < 0.001). Respiratory exchange ratio did not decrease during the night, indicating metabolic inflexibility. CONCLUSIONS: Mitochondrial oxidative capacity does not show a day-night rhythm in older, overweight participants with impaired glucose tolerance and insulin sensitivity. In addition, gene expression of PER2 in skeletal muscle indicates that rhythmicity of the negative feedback loop of the molecular clock is disturbed. CLINICALTRIALS. GOV ID: NCT03733743.


Assuntos
Ritmo Circadiano/fisiologia , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adulto , Idoso , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Relógios Circadianos/genética , Expressão Gênica , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Sobrepeso/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
20.
PLoS One ; 15(9): e0239506, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32976523

RESUMO

BACKGROUND: Low carnitine status may underlie the development of insulin resistance and metabolic inflexibility. Intravenous lipid infusion elevates plasma free fatty acid (FFA) concentration and is a model for simulating insulin resistance and metabolic inflexibility in healthy, insulin sensitive volunteers. Here, we hypothesized that co-infusion of L-carnitine may alleviate lipid-induced insulin resistance and metabolic inflexibility. METHODS: In a randomized crossover trial, eight young healthy volunteers underwent hyperinsulinemic-euglycemic clamps (40mU/m2/min) with simultaneous infusion of saline (CON), Intralipid (20%, 90mL/h) (LIPID), or Intralipid (20%, 90mL/h) combined with L-carnitine infusion (28mg/kg) (LIPID+CAR). Ten volunteers were randomized for the intervention arms (CON, LIPID and LIPID+CAR), but two dropped-out during the study. Therefore, eight volunteers participated in all three intervention arms and were included for analysis. RESULTS: L-carnitine infusion elevated plasma free carnitine availability and resulted in a more pronounced increase in plasma acetylcarnitine, short-, medium-, and long-chain acylcarnitines compared to lipid infusion, however no differences in skeletal muscle free carnitine or acetylcarnitine were found. Peripheral insulin sensitivity and metabolic flexibility were blunted upon lipid infusion compared to CON but L-carnitine infusion did not alleviate this. CONCLUSION: Acute L-carnitine infusion could not alleviated lipid-induced insulin resistance and metabolic inflexibility and did not alter skeletal muscle carnitine availability. Possibly, lipid-induced insulin resistance may also have affected carnitine uptake and may have blunted the insulin-induced carnitine storage in muscle. Future studies are needed to investigate this.


Assuntos
Carnitina/administração & dosagem , Ácidos Graxos não Esterificados/sangue , Ácidos Graxos não Esterificados/metabolismo , Resistência à Insulina/fisiologia , Lipídeos/administração & dosagem , Adulto , Carnitina/análogos & derivados , Carnitina/sangue , Estudos Cross-Over , Emulsões/administração & dosagem , Humanos , Bombas de Infusão , Insulina/sangue , Insulina/metabolismo , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fosfolipídeos/administração & dosagem , Óleo de Soja/administração & dosagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA