Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(10): E2366-E2375, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29463745

RESUMO

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


Assuntos
Aglaia/química , Antimaláricos/administração & dosagem , Malária Cerebral/tratamento farmacológico , Extratos Vegetais/administração & dosagem , Animais , Modelos Animais de Doenças , Eritrócitos/parasitologia , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Feminino , Humanos , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
2.
PLoS Pathog ; 12(6): e1005690, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27280768

RESUMO

The protozoan Leishmania parasitizes macrophages and evades the microbicidal consequences of phagocytosis through the inhibition of phagolysosome biogenesis. In this study, we investigated the impact of this parasite on LC3-associated phagocytosis, a non-canonical autophagic process that enhances phagosome maturation and functions. We show that whereas internalization of L. major promastigotes by macrophages promoted LC3 lipidation, recruitment of LC3 to phagosomes was inhibited through the action of the parasite surface metalloprotease GP63. Reactive oxygen species generated by the NOX2 NADPH oxidase are necessary for LC3-associated phagocytosis. We found that L. major promastigotes prevented, in a GP63-dependent manner, the recruitment of NOX2 to phagosomes through a mechanism that does not involve NOX2 cleavage. Moreover, we found that the SNARE protein VAMP8, which regulates phagosomal assembly of the NADPH oxidase NOX2, was down-modulated by GP63. In the absence of VAMP8, recruitment of LC3 to phagosomes containing GP63-deficient parasites was inhibited, indicating that VAMP8 is involved in the phagosomal recruitment of LC3. These findings reveal a role for VAMP8 in LC3-associated phagocytosis and highlight a novel mechanism exploited by L. major promastigotes to interfere with the host antimicrobial machinery.


Assuntos
Leishmaniose Cutânea/metabolismo , Macrófagos/metabolismo , Metaloendopeptidases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagocitose/fisiologia , Proteínas R-SNARE/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Leishmania major , Leishmaniose Cutânea/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Metaloendopeptidases/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/imunologia , Proteínas R-SNARE/imunologia
3.
Malar J ; 15(1): 260, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-27150250

RESUMO

BACKGROUND: The potential emergence and spread of resistance to artemisinins in the Plasmodium falciparum malaria parasite constitutes a major global health threat. Hence, improving the efficacy of artemisinins and of artemisinin-based combination therapy (ACT) represents a major short-term goal in the global fight against malaria. Mice defective in the enzyme pantetheinase (Vnn3) show increased susceptibility to blood-stage malaria (increased parasitaemia, reduced survival), and supplementation of Vnn3 mutants with the reaction product of pantetheinase, cysteamine, corrects in part the malaria-susceptibility phenotype of the mutants. Cysteamine (Cys) is a small, naturally occurring amino-thiol that has very low toxicity in vivo and is approved for clinical use in the life-long treatment of the kidney disorder nephropathic cystinosis. METHODS: The ability of Cys to improve the anti-plasmodial activity of different clinically used artemisinins was tested. The effect of different CYS/ART combinations on malarial phenotypes (parasite blood-stage replication, overall and survival from lethal infection) was assessed in a series of in vivo experiments using Plasmodium strains that induce either blood-stage (Plasmodium chabaudi AS) or cerebral disease (Plasmodium berghei ANKA). This was also evaluated in an ex vivo experimental protocol that directly assesses the effect of such drug combinations on the viability of Plasmodium parasites, as measured by the ability of tested parasites to induce a productive infection in vivo in otherwise naïve animals. RESULTS: Cys is found to potentiate the anti-plasmodial activity of artesunate, artemether, and arteether, towards the blood-stage malaria parasite P. chabaudi AS. Ex vivo experiments, indicate that potentiation of the anti-plasmodial activity of artemisinins by Cys is direct and does not require the presence of host factors. In addition, potentiation occurs at sub-optimal concentrations of artemisinins and Cys that on their own have little or no effect on parasite growth. Cys also dramatically enhances the efficacy and protective effect of artemisinins against cerebral malaria induced by infection with the P. berghei ANKA parasite. CONCLUSION: These findings indicate that inclusion of Cys in current formulations of ACT, or its use as adjunct therapy could improve the anti-plasmodial activity of artemisinin, decrease mortality in cerebral malaria patients, and prevent or delay the development and spread of artemisinin resistance.


Assuntos
Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Cisteamina/administração & dosagem , Sinergismo Farmacológico , Malária/tratamento farmacológico , Animais , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Malária Cerebral/tratamento farmacológico , Camundongos , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium chabaudi/efeitos dos fármacos , Plasmodium chabaudi/fisiologia , Análise de Sobrevida , Resultado do Tratamento
4.
Exp Parasitol ; 128(1): 9-17, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21276444

RESUMO

An intercellular spreading strategy using herpes simplex virus type 1 (HSV-1) VP22 protein is employed to enhance DNA vaccine potency of Leishmania major amastin antigen in BALB/c mice model. We evaluated the immunogenicity and protective efficacy of plasmid DNA vaccines encoding amastin-enhanced green fluorescent protein (EGFP) and VP22-amastin-EGFP. Optimal cell-mediated immune responses were observed in BALB/c mice immunized with VP22-amastin-EGFP as assessed by cytokine gene expression analysis using real time RT-PCR. Vaccination with the VP22-amastin-EGFP fusion construct elicited significantly higher IFN-gamma response upon antigen stimulation of splenocytes from immunized mice compared to amastin as a sole antigen. Mice immunized by VP22-amastin-EGFP showed partial protection following infectious challenge with L. major, as measured by parasite load in spleens. These results suggest that the development of DNA vaccines encoding VP22 fused to a target Leishmania antigen would be a promising strategy to improve immunogenicity and DNA vaccine potency.


Assuntos
Proteínas de Fluorescência Verde/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/prevenção & controle , Vacinas Protozoárias , Vacinas de DNA , Proteínas Estruturais Virais/imunologia , Animais , Células COS , Chlorocebus aethiops , Modelos Animais de Doenças , Feminino , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-5/genética , Interleucina-5/intoxicação , Leishmania major/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Vacinas Protozoárias/normas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/imunologia , Transfecção , Vacinas de DNA/imunologia , Vacinas de DNA/normas , Proteínas Estruturais Virais/genética
5.
Cell Rep ; 32(12): 108170, 2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32966787

RESUMO

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Assuntos
Anemia/etiologia , Anemia/prevenção & controle , Bisfosfoglicerato Mutase/deficiência , Malária Cerebral/enzimologia , Malária Cerebral/prevenção & controle , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sequência de Bases , Bisfosfoglicerato Mutase/química , Bisfosfoglicerato Mutase/genética , Bisfosfoglicerato Mutase/metabolismo , Estabilidade Enzimática , Eritrócitos/enzimologia , Eritrócitos/parasitologia , Eritropoese , Matriz Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Malária Cerebral/complicações , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação/genética , Parasitos/crescimento & desenvolvimento , Plasmodium/crescimento & desenvolvimento , Policitemia
6.
Front Genet ; 11: 612515, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33335541

RESUMO

Population sequencing often requires collaboration across a distributed network of sequencing centers for the timely processing of thousands of samples. In such massive efforts, it is important that participating scientists can be confident that the accuracy of the sequence data produced is not affected by which center generates the data. A study was conducted across three established sequencing centers, located in Montreal, Toronto, and Vancouver, constituting Canada's Genomics Enterprise (www.cgen.ca). Whole genome sequencing was performed at each center, on three genomic DNA replicates from three well-characterized cell lines. Secondary analysis pipelines employed by each site were applied to sequence data from each of the sites, resulting in three datasets for each of four variables (cell line, replicate, sequencing center, and analysis pipeline), for a total of 81 datasets. These datasets were each assessed according to multiple quality metrics including concordance with benchmark variant truth sets to assess consistent quality across all three conditions for each variable. Three-way concordance analysis of variants across conditions for each variable was performed. Our results showed that the variant concordance between datasets differing only by sequencing center was similar to the concordance for datasets differing only by replicate, using the same analysis pipeline. We also showed that the statistically significant differences between datasets result from the analysis pipeline used, which can be unified and updated as new approaches become available. We conclude that genome sequencing projects can rely on the quality and reproducibility of aggregate data generated across a network of distributed sites.

7.
Can J Neurol Sci ; 35(2): 216-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18574937

RESUMO

UNLABELLED: Myotonic dystrophy type 1 (DM1) is due to an unstable expansion of CTG repeat in the DMPK gene (19q13.3). The CTG repeat is highly polymorphic (5 to 37) in healthy individuals. According to the hypothesis that expanded (CTG)n alleles originated from larger normal alleles, there may exist a correlation between the prevalence of DM1 and the frequency of large size normal alleles. Strong linkage disequilibrium between different length alleles and the three biallelic markers, Alu, Hinf1 and Taq1, has been reported. OBJECTIVE: To determine the distribution of normal alleles, the frequency of larger normal alleles and analysis of the three biallelic markers, in healthy Iranian controls. MATERIAL AND METHODS: Polymerase chain reaction (PCR) was conducted on two hundred unrelated healthy individuals from different ethnic groups living in Iran to determine the size of the alleles. Markers were analyzed by PCR/RFLP on 174 chromosomes from other control healthy individuals. RESULTS: Our data reveals that 23.7% of alleles had 5 CTG repeats and 7.2% of alleles had > 18 CTG repeats. The analysis of haplotypes revealed that 75% of CTG5 and 80% of CTG > 18 had the (+++) haplotype. CONCLUSION: The frequency of alleles with CTG > 18 in Iran is similar to that of Western Europe and Japan.


Assuntos
Haplótipos , Distrofia Miotônica/genética , Proteínas Serina-Treonina Quinases/genética , Expansão das Repetições de Trinucleotídeos/genética , Frequência do Gene , Humanos , Irã (Geográfico)/etnologia , Miotonina Proteína Quinase , Polimorfismo Genético/genética , Grupos Populacionais
8.
Nat Commun ; 8(1): 932, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-29030607

RESUMO

Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B+lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4+ T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14+ myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn's disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.Hook-related protein family member CCDC88b is encoded by a locus that has been associated with inflammatory bowel disease. Here the authors show that Ccdc88b inactivation in T cells prevents colitis in a transfer model, and detect high colonic levels of CCDC88b in patients with Crohn disease or ulcerative colitis, identifying that expression correlates with disease risk.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colite/patologia , Doenças Inflamatórias Intestinais/patologia , Animais , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sulfato de Dextrana/toxicidade , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Células Mieloides/metabolismo , Células Mieloides/patologia , Polimorfismo de Nucleotídeo Único , Linfócitos T/metabolismo , Linfócitos T/patologia
9.
Cell Host Microbe ; 13(3): 245-7, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23498949

RESUMO

Host lipid alterations are centrally involved in Leishmania donovani infection, and infected patients exhibit hypocholesterolemia. In this issue of Cell Host & Microbe, Ghosh et al. (2013) show that the metalloprotease GP63 released by L. donovani in the liver cleaves DICER1, inhibiting miR-122 maturation, which regulates cholesterol metabolism. These events decrease serum cholesterol and promote parasite growth.

10.
Cell Host Microbe ; 14(1): 15-25, 2013 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-23870310

RESUMO

During phagocytosis, microorganisms are taken up by immune cells into phagosomes. Through membrane-trafficking events mediated by SNARE proteins, phagosomes fuse with lysosomes, generating degradative phagolysosomes. Phagolysosomes contribute to host immunity by linking microbial killing within these organelles with antigen processing for presentation on MHC class I or II molecules to T cells. We show that the intracellular parasite Leishmania evades immune recognition by inhibiting phagolysosome biogenesis. The Leishmania cell surface metalloprotease GP63 cleaves a subset of SNAREs, including VAMP8. GP63-mediated VAMP8 inactivation or Vamp8 disruption prevents the NADPH oxidase complex from assembling on phagosomes, thus altering their pH and degradative properties. Consequently, the presentation of exogenous Leishmania antigens on MHC class I molecules, also known as cross-presentation, is inhibited, resulting in reduced T cell activation. These findings indicate that Leishmania subverts immune recognition by altering phagosome function and highlight the importance of VAMP8 in phagosome biogenesis and antigen cross-presentation.


Assuntos
Apresentação de Antígeno , Apresentação Cruzada , Interações Hospedeiro-Parasita , Evasão da Resposta Imune , Leishmania/imunologia , Leishmaniose/imunologia , Proteínas R-SNARE/imunologia , Animais , Cricetinae , Feminino , Humanos , Leishmania/enzimologia , Leishmaniose/metabolismo , Leishmaniose/parasitologia , Metaloendopeptidases/imunologia , Metaloendopeptidases/metabolismo , Camundongos Endogâmicos BALB C , Fagossomos/imunologia , Proteólise , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-23050244

RESUMO

Upon their internalization by macrophages, Leishmania promastigotes inhibit phagolysosome biogenesis. The main factor responsible for this inhibition is the promastigote surface glycolipid lipophosphoglycan (LPG). This glycolipid has a profound impact on the phagosome, causing periphagosomal accumulation of F-actin and disruption of phagosomal lipid microdomains. Functionally, this LPG-mediated inhibition of phagosome maturation is characterized by an impaired assembly of the NADPH oxidase and the exclusion of the vesicular proton-ATPase from phagosomes. In this chapter, we review the current knowledge concerning the nature of the intra-macrophage compartment in which Leishmania donovani promastigotes establish infection. We also describe how LPG enables this parasite to remodel the parasitophorous vacuole.


Assuntos
Interações Hospedeiro-Patógeno , Leishmania donovani/patogenicidade , Macrófagos/parasitologia , Fagossomos/parasitologia , Animais , Humanos , NADPH Oxidases/antagonistas & inibidores , ATPases Translocadoras de Prótons/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA